Sec. 17.7 [P Multicast Addresses 325

normal delivery of data. Furthermore, datagrams sent to these addresses only reach
machines on the same local network as the sender; there are no IP multicast addresses
that refer to all systems in the internet or all routers in the internet.

17.8 Multicast Address Semantics

IP treats multicast addresses differently than unicast addresses. For example, a
multicast address can only be used as a destination address. Thus, a multicast address
can never appear in the source address field of a datagram, nor can it appear in a source
route or record route option. Furthermore, no ICMP error messages can be generated
about multicast datagrams (e.g., destination unreachable, source quench, echo reply, or
time exceeded). Thus, a ping sent to a multicast address will go unanswered.

The rule prohibiting ICMP errors is somewhat surprising because IP routers do
honor the time-to-live field in the header of a multicast datagram. As usual, each router
decrements the count, and discards the datagram (without sending an ICMP message) if
the count reaches zero. We will see that some protocols use the time-to-live count as a
way to limit datagram propagation.

17.9 Mapping IP Multicast To Ethernet Multicast

Although the TP multicast standard does not cover all types of network hardware, it
does specify how to map an IP multicast address to an Ethernet multicast address. The
mapping is efficient and easy to understand:

To map an IP multicast address to the corresponding Ethernet multi-
cast address, place the low-order 23 bits of the IP multicast address
into the low-order 23 bits of the special Ethernet multicast address
01.00.5E.00.00.00

For example, I[P multicast address 224.0.0.2 becomes Ethernet multicast address
01.00.5E.00.00.02,,.

Interestingly, the mapping is not unique. Because IP multicast addresses have 28
significant bits that identify the multicast group, more than one multicast group may
map onto the same Ethernet multicast address at the same time. The designers chose
this scheme as a compromise. On one hand, using 23 of the 28 bits for a hardware ad-
dress means most of the multicast address is included. The set of addresses is large
enough so the chances of two groups choosing addresses with all low-order 23 bits
identical is small. On the other hand, arranging for IP to use a fixed part of the Ether-
net multicast address space makes debugging much easier and eliminates interference
between IP and other protocols that share an Ethernet. The consequence of this design
is that some multicast datagrams may be received at a host that are not destined for that
host. Thus. the IP software must carefully check addresses on all incoming datagrams
and discard any unwanted multicast datagrams.

326 Internet Multicasting Chap. 17
17.10 Hosts And Multicast Delivery

We said that IP multicasting can be used on a single physical network or
throughout an internet. In the former case, a host can send directly to a destination host
merely by placing the datagram in a frame and using a hardware multicast address to
which the receiver is listening. In the latter case. special mulricast routers forward mul-
ticast datagrams among networks, so a host must send the datagram to a multicast
router. Surprisingly, a host does not need to install a route to a multicast router. nor
does the host’s default route need to specify one. Instead. the technique a host uses to
forward a multicast datagram to a router is unlike the routing lookup used for unicast
and broadcast datagrams — the host merely uses the local network hardware's multicast
capability to transmit the datagram. Multicast routers listen for all IP multicast
transmissions; if a multicast router is present on the metwork, it will receive the da-
tagram and forward it on to another network if necessary. Thus, the primary difference
between local and nonlocal multicast lies in multicast routers. not in hosts.

17.11 Multicast Scope

The scope of a multicast group refers to the range of group members. If all
members are on the same physical network. we say that the group’s scope is restricted
to one network. Similarly, if all members of a group lie within a single organization.
we say that the group has a scope limited to one organization.

In addition to the group’s scope, each multicast datagram has a scope which is de-
fined to be the set of networks over which a given multicast datagram will be propagat-
ed. Informally, a datagram’s scope is referred to as its range.

IP uses two techniques to control multicast scope. The first technique relies on the
datagram’s time-to-live (TTL) field to control its range. By setting the TTL to a small
value, a host can limit the distance the datagram will be routed. For example, the stan-
dard specifies that control messages, which are used for communication between a host
and a router on the same network, must have a TTL of 1. As a consequence. a router
never forwards any datagram carrying control information because the TTL expires
causing the router to discard the datagram. Similarly. if two applications running on a
single host want to use IP multicast for interprocessor communication (e.g.. for testing
software), they can choose a TTL value of O to prevent the datagram from leaving the
host. It is possible to use successively larger values of the TTL field to further extend
the notion of scope. For example, some router vendors suggest configuring routers at a
site to restrict multicast datagrams from leaving the site unless the datagram has a TTL
greater than 15. We conclude that it is possible to use the TTL field in a datagram
header to provide coarse-grain control over the datagram’s scope.

Known as administrative scoping. the second technique used to control scoping
consists of reserving parts of the address space for groups that are local to a given site
or local to a given organization. According to the standard, routers in the Internet are
forbidden from forwarding any datagram that has an address chosen from the restricted

Sec. 17.11 Multicast Scope 27
space. Thus, to prevent multicast communication among group members from acciden-
tally reaching outsiders, an organization can assign the group an address that has local
scope. Figure 17.2 shows examples of address ranges that correspond to administrative
scoping.

17.12 Extending Host Software To Handle Multicasting

A host participates in [P multicast at one of three levels as Figure 17.3 shows:

Level Meaning
0 Host can neither send nor receive IP muiticast
1 Host can send but not receive IP multicast
2 Host can both send and receive IP multicast

Figure 17.3 The three levels of participation in IP multicast.

Modifications that allow a host to send IP multicast are not ditficult. The P
software must allow an application program to specify a multicast address as a destina-
tion IP address, and the network interface software must be able to map an IP multicast
address into the corresponding hardware multicast address (or use broadcast if the
hardware does not support multicasting).

Extending host software to receive P multicast datagrams is more complex. 1P
software on the host must have an API that allows an application program to declare
that it wants to join or leave a particular multicast group. If multiple application pro-
grams join the same group. the IP software must remember to pass each of them a copy
of datagrams that arrive destined for that group. If all application programs leave a
group. the host must remember that it no longer participates in the group. Furthermore.
as we will see in the next section, the host must run a protocol that informs the local
multicast routers of its group membership status. Much of the complexity comes from’
a basic idea:

Hosts join specific 1P multicast groups on specific networks.

That is, a host with multiple network connections may join a particular multicast group
on one network and not on another. To understand the reason for keeping group
membership associated with networks, remember that it is possible to use IP multicast-
ing among local sets of machines. The host may want to use a multicast application to
interact with machines on one physical net, but not with machines on another.

Because group membership is associated with particular networks, the software
must keep separate lists of multicast addresses for each network to which the machine
attaches. Furthermore, an application program must specify a particular network when
it asks to join or leave a multicast group.

328 Internet Multicasting Chap. 17
17.13 Internet Group Management Protocol

To participate in IP multicast on a local network, a host must have software that al-
lows it to send and receive multicast datagrams. To participate in a multicast that spans
multiple networks, the host must inform local multicast routers. The local routers con-
tact other multicast routers, passing on the membership information and establishing
routes. We will see later that the concept is similar to conventional route propagation
among internet routers.

Before a multicast router can propagate multicast membership information. it must
determine that one or more hosts on the local network have decided to join a multicast
group. To do so, multicast routers and hosts that implement multicast must use the n-
ternet Group Management Protocol (IGMP) to communicate group membership infor-
mation. Because the current version is 2, the protocol described here is officially
known as IGMPv2.

IGMP is analogous to ICMP+. Like ICMP, it uses IP datagrams to carry mes-
sages. Also like ICMP, it provides a service used by IP. Therefore,

Although IGMP uses IP datagrams to carrv messages, we think of it
as an integral part of IP, not a separate protocol.

Furthermore, IGMP is a standard for TCP/IP; it is required on all machines that receive
IP multicast (i.e., all hosts and routers that participate at level 2).

Conceptually, IGMP has two phases. Phase 1: When a host joins a new multicast
group, it sends an IGMP message to the group’s multicast address declaring its
membership. Local multicast routers receive the message, and establish necessary rout-
ing by propagating the group membership information to other multicast routers
throughout the internet. Phase 2: Because membership is dynamic, local multicast
routers periodically poll hosts on the local network to determine whether any hosts still
remain members of each group. If any host responds for a given group, the router
keeps the group active. If no host reports membership in a group after several polls, the
multicast router assumes that none of the hosts on the network remain in the group. and
stops advertising group membership to other multicast routers.

17.14 IGMP Implementation

IGMP is carefully designed to avoid adding overhead that can congest networks.
In particular, because a given network can include multiple multicast routers as well as
hosts that all participate in multicasting, IGMP must avoid having all participants gen-
erate control traffic. There are several ways IGMP minimizes its effect on the network:

First, all communication between hosts and multicast routers uses IP multi-
cast. That is, when IGMP messages are encapsulated in an IP datagram for
transmission. the IP destination address is a multicast address — routers

“Chapter 9 discusses ICMP. the Internet Control Message Protocol.

Sec. 17.14 IGMP Implementation 329

send general IGMP queries to the all hosts address, hosts send some IGMP
messages to the all routers address, and both hosts and routers send IGMP
messages that are specific to a group to the group’s address. Thus, da-
tagrams carrying IGMP messages are transmitted using hardware multicast
if it is available. As a result, on networks that support hardware multicast,
hosts not participating in IP multicast never receive IGMP messages.

Second, when polling to determine group membership, a multicast router
sends a single query to request information about all groups instead of
sending a separate message to each®. The default polling rate is 125
seconds, which means that IGMP does not generate much traffic.

Third, if multiple multicast routers attach to the same network, they quickly
and efficiently choose a single router to poll host membership. Thus, the
amount of IGMP traffic on a network does not increase as additional multi-
cast routers are attached to the net.

Fourth, hosts do not respond to a router’s IGMP query at the same time.
Instead, each query contains a value, N, that specifies a maximum response
time (the default is 10 seconds). When a query arrives, a host chooses a
random delay between 0 and N which it waits before sending a response.
In fact, if a given host is a member of multiple groups, the host chooses a
different random number for each. Thus, a host’s response to a router’s
query will be spaced randomly over /0 seconds.

Fifth, each host listens for responses from other hosts in the group, and
suppresses unnecessary response traffic.

To understand why extra responses from group members can be suppressed, recall
that a multicast router does not need to keep an exact record of group membership.
Transmissions to the group are sent using hardware multicast. Thus, a router only
needs to know whether at least one host on the network remains a member of the group.
Because a query sent to the all systems address reaches every member of a group, each
host computes a random delay and begins to wait. The host with smallest delay sends
its response first. Because the response is sent to the group’s muiticast address, all oth-
er members receive a copy as does the multicast router. Other members cancel their ti-
mers and suppress transmission. Thus, in practice, only one host from each group
responds to a request message.

17.15 Group Membership State Transitions

On a host, IGMP must remember the status of each multicast group to which the
host belongs (i.e., a group from which the host accepts datagrams).f. We think of a
host as keeping a table in which it records group membership information. Initially, all
entries in the table are unused. Whenever an application program on the host joins a

+The protocol does include a message type that allows a router to query a specific group. if necessary.
+The all systems group. 224.0.0.1. is an exception — a host never reports membership in that group.

330 Internet Multigasting Chap. 17

new group, IGMP software allocates an entry and fills in information about the group.
Among the information. IGMP keeps a group reference counter which it initializes to /.
Each time another application program joins the group, IGMP increments the reference
counter in the entry. If one of the application programs terminates execution (or expli-
citly drops out of the group). IGMP decrements the group's reference counter. When
the reference count reaches zero. the host informs multicast routers that it is leaving the
multicast group.

The actions IGMP software takes in response to various events can best be ex-
plained by the state transition diagram in Figure 17.4.

another host responds/cancel timer

join group/start timer

timer expires/send response

NON-
MEMBER

DELAYING
MEMBER

leave group/cancel timer

query arrives/start timer

reference count becomes zero/leave group

Figure 17.4 The three possible states of an entry in a host’s multicast group
table and transitions among them where each transition is la-
beled with an event and an action. The state transitions do not
show messages sent when joining and leaving a group.

A host maintains an independent table entry for each group of which it is currently
a member. As the figure shows. when a host first joins the group or when a query ar-
rives from a multicast router, the host moves the entry to the DELAYING MEMBER
state and chooses a random delay. If another host in the group responds to the router’s
query before the timer expires, the host cancels its timer and moves to the MEMBER
state. If the timer expires. the host sends a response message before moving to the
MEMBER state. Because a router only generates a query every 125 seconds, one ex-
pects the host to remain in the MEMBER state most of the time. .

The diagram in Figure 17.4 omits a few details. For example, if a query arrives
while the host is in the DELAYING MEMBER state. the protocol requires the host to
reset its timer. More important, to maintain backward compatibility with IGMPv1, ver-
sion 2 also handles version / messages, making it possible to use both IGMPvI and
IGMPv2 on the same network concurrently.

Sec. 17.16 IGMP Message Format 334
17.16 IGMP Message Format

As Figure 17.5 shows, IGMP messages used by hosts have a simple format.

0 8 16 31
TYPE RESP TIME | CHECKSUM
GROUP ADDRESS (ZERO IN QUERY)

Figure 17.5 The format of the 8-octet IGMP message used for communica-
tion between hosts and routers.

Each IGMP message contains exactly eight octets. Field TYPE identifies the type
of message. with the possible types listed in Figure 17.6. When a router polls for group
membership, field labeled RESP TIME carries a maximum interval for the random delay
that group members compute, measured in tenths of seconds. Each host in the group
delays a random time between zero and the specified value before responding. ‘As we
said. the default is 10 seconds, which means all hosts in a group choose a random value
between 0 and 10. IGMP allows routers set a maximum value in each query message to
give managers control over IGMP traffic. If a network contains many hosts, a higher
delay value further spreads out response times and, therefore, lowers the probability of
having more than one host respond to the query. The CHECKSUM field contains a
checksum for the message (IGMP checksums are computed over the IGMP message
only. and use the same algorithm as TCP and IP). Finally. the GROUP ADDRESS field
is either used to specify a particular group or contains zero to refer to all groups. When
it sends a query to a specific group. a router fills in the GROUP ADDRESS field; hosts
fill in the field when sending membership reports.

Type Group Address Meaning

ox11 unused (zero) General membership query

Ox11 used Specific group membership query
0x16 used Membership report

0x17 used Leave group

0x12 used Membership report (version 1)

Figure 17.6 IGMP message types used in version 2. The version | member-
ship report message provides backward compatibility.

Note that IGMP does not provide a mechanism that allows a host to discover the
IP address. of a group — application software must know the group address before it
can use IGMP to join the group. Some applications use permanently assigned ad-
dresses, some allow a manager to configure the address when the software is installed,

332 Internet Multicasting . Chap. 17

and others obtain the address dynamically (e.g., from a server). In any case, IGMP pro-
vides no support for address lookup.

17.17 Multicast Forwarding And Routing Information

Although IGMP and the multicast addressing scheme described above specify how
hosts interact with a local router and how multicast datagrams are transferred across a
single network, they do not specify how routers exchange group membership informa-
tion or how routers ensure that a copy of each datagram reaches all group members.
More important, although multiple protocols have been proposed. no single standard has
emerged for the propagation of multicast routing information. In fact, although much
effort has been expended, there is no agreement on an overall plan — existing protocols
differ in their goals and basic approach.

Why is multicast routing so difficult? Why not extend conventional routing
schemes to handle multicast? The answer is that multicast routing differs from conven-
tional routing in fundamental ways because multicast forwarding differs from conven-
tional forwarding. To appreciate some of the differences, consider multicast forwarding
over the architecture that Figure 17.7 depicts.

network 1
9 e ®
B (o} D E

R
network 3
lé network 2

A

y

Figure 17.7 A simple internet with three networks connected by a router that
illustrates multicast forwarding. Hosts marked with a dot parti-
cipate in one multicast group while those marked with an “'x°
participate in another.

 (X]

17.17.1 Need For Dynamic Routing

Even for the simple topology shown in the figure, multicast forwarding differs
from unicast forwarding. For example, the figure shows two multicast groups: the
group denoted by a dot has fmembers A, B, and C, and the group denoted by a cross has
members D, E, and F. The dotted group has no members on network 2. To avoid
wasting bandwidth unnecessarily. the router should never send packets intended for the

Sec. 17.17 Multicast Forwarding And Routing Information 333

dotted group across network 2. However, a host can join any group at any time — if
the host is the first on its network to join the group, multicast routing must be changed
to include the network. Thus, we come to an important difference between convention-
al routing and mulficast routing:

Unlike unicast routing in which routes change only when the topology
changes or equipment fails, multicast routes can change simply be-
cause an application program joins or leaves a multicast group.

17.17.2 Insufficiency Of Destination Routing

The example in Figure 17.7 illustrates another aspect of multicast routing. If host
F and host E each send a datagram to the cross group, router R will receive and forward
them. Because both datagrams are directed at the same group, they have the same des-
tination address. However, the correct forwarding actions differ: R sends the datagram
from E to net 2, and sends the datagram from F to net /. Interestingly, when it receives
a datagram destinated for the cross group sent by host A, the router uses a third action:
it forwards two copies, one to net I and the other to net 2. Thus, we see the second
major difference between conventional forwarding and multicast forwarding:

Mudlticast forwarding requires a router to examine more than the des-
tination address.

17.17.3 Arbitrary Senders

The final feature of multicast routing illustrated by Figure 17.7 arises because IP
allows an arbitrary host, one that is not necessarily a member of the group, to send a da-
tagram to the group. In the figure, for example, host G can send a datagram to the dot-
ted group even though G is not a member of any group and there are no members of the
dotted group on G’s network. More important, as it travels through the internet, the da-
tagram may pass across other networks that have no group members attached. Thus, we
can sumrmarize:

A multicast datagram may originate on a computer that is not part of
the multicast group, and may be routed across networks that do not
have any group members attached.

334 Internet Multicasting Chap. 17
17.18 Basic Multicast Routing Paradigms

We know from the example above that multicast routers use more than the destina-
tion address to forward datagrams, so the question arises: ‘‘exactly what information
does a multicast router use when deciding how to forward a datagram?’’ The answer
lies in understanding that because a multicast destination represents a set of computers,
an optimal forwarding system will reach all members of the set without sending a da-
tagram across a given network twice. Although a single multicast router such as the
one in Figure 17.7 can simply avoid sending a datagram back over the interface on
which it arrives, using the interface alone will not prevent a datagram from being for-
warded among a set of routers that are arranged in a cycle. To avoid such routing
loops, multicast routers rely on the datagram’s source address.

One of the first ideas to emerge for multicast forwarding was a form of broadcast-
ing described earlier. Known as Reverse Path Forwarding (RPF),T the scheme uses a
datagram’s source address to prevent the datagram from traveling around a loop repeat-
edly. To use RPF, a multicast router must have a conventional routing table with shor-
test paths to all destinations. When a datagram arrives, the router extracts the source
address, looks it up in the local routing table, and finds '/, the interface that leads to the
source. If the datagram arrived over interface /, the router forwards a copy to each of
the other interfaces; otherwise, the router discards the copy.

Because it ensures that a copy of each multicast datagram is sent across every net-
work in the internet, the basic RPF scheme guarantees that every host in a multicast
group will receive a copy of each datagram sent to the group. However, RPF alone is
not used for multicast routing because it wastes bandwidth by transmitting multicast da-
tagrams over networks that neither have group members nor lead to group members.

To avoid propagating multicast datagrams where they are not needed, a modified
form of RPF was invented. Known as Truncated Reverse Path Forwarding (TRPF) or
Truncated Reverse Path Broadcasting (TRPB), the scheme follows the RPF algorithm,
but further restricts propagation by avoiding paths that do not lead to group mémbers.
To use TRPF, a multicast router needs two pieces of information: a conventional rout-
ing table and a list of multicast groups reachable through each network interface. When
a multicast datagram arrives, the router first applies the RPF rule. If RPF specifies dis-
carding the copy, the router does so. However, if RPF specifies transmitting the da-
tagram over a particular interface. the router first makes an additional check to verity
that one or more members of the group designated in the datagram’s destination address
are reachable over the interface. 1f no group members are reachable over the interface.
the router skips that interface, and continues examining the next one. In fact, we can
now understand the origin of the term rruncated -— a router truncates forwarding when
no more group members lie along the path.

We can summarize:

When making a forwarding decision, a multicast router uses both the
datagram’s source and destination addresses. The basic forwarding
mechanism is known as Truncated Reverse Path Forwarding.

“Reverse path forwarding is sometimes called Reverse Puth Broadcasting (RPB).

Sec. 17.18 Basic Multicast Routing Paradigms 335
17.19 Consequences Of TRPF

Although TRPF guarantees that each member of a multicast group receives a copy
of each datagram sent to the group, it has two surprising consequences. First, because it
relies on RPF to prevent loops, TRPF delivers an extra copy of datagrams to some net-
works just like conventional RPF. Figure 17.8 illustrates how duplicates arise.

network 1

b @
network 2 network 3

network 4

5

Figure 17.8 A topology that causes an RPF scheme to deliver multiple copies
of a datagram to some destinations.

In the figure, when host A sends a datagram, routers R, and R, each receive a copy.
Because the datagram arrives over the interface that lies along the shortest path o A, R,
forwards a copy to network 2, and R, forwards a copy to network 3. When it receives a
copy from network 2 (the shortest path to A), R, forwards the copy to network 4. Un-
fortunately, R, also forwards a copy to network 4. Thus, although RPF allows R; and
R, to prevent a loop by discarding the copy that arrives over network 4, host B receives
two copies of the datagram.

A second surprising consequence arises because TRPF uses both source and desti-
nation addresses when forwarding datagrams: delivery depends on a datagram’s source.
For example, Figure 17.9 shows how multicast routers forward datagrams from two dif-
ferent sources across a fixed topology.

336

Internet Multicasting Chap. 17

net 1
1
‘ d
R] X
net 2 - net3
R] v [R z (R
net 4 ’ ' net5 net 6
(a)
net 1
R X
net 2 7 net 3
I 1 ‘
1 O
R] v [R z
net 4 net5 net 6
(b)

Figure 17.9 Examples of paths a multicast datagram follows under TRPF as-
suming the source is (a) host X, and (b) host Z, and the group
has a member on each of the networks. The number of copies

received depends on the source.

As the figure shows, the source affects both the path a datagram follows to reach a
given network as well as the delivery details. For example, in part (a) of the figure, a
transmission by host X causes TRPF to deliver two copies of the datagram to network 5.
In part (b), only one copy of a transmission by host Z reaches network 5, but two copies

reach networks 2 and 4.

Sec. 17.20 Multicast Trees 337
17.20 Multicast Trees

Researchers use graph theory terminology to describe the set of paths from a given
source to all members of a multicast group: they say that the paths define a graph-
theoretic rreet, which is sometimes called a forwarding tree or a delivery tree. Each
multicast router corresponds to a node in the tree, and a network that connects two
routers corresponds to an edge in the tree. The source of a datagram is the root or root
node of the tree. Finally, the last router along each of the paths from the source is
called a leaf router. The terminology is sometimes applied to networks as well —
researchers call a network hanging off a leaf router a leaf network.

As an example of the terminology, consider Figure 17.9. Part a shows a tree with
root X, and leaves R, R,, R;, and R,. Technically, part b does not show a tree because
router R, lies along two paths. Informally, researchers often overlook the details and
refer to such graphs as trees.

The graph terminology allows us to express an important principle:

A multicast forwarding tree is defined as a set of paths through multi-
cast routers from a source to all members of a multicast group. For a
given multicast group, each possible source of datagrams can deter-
mine a different forwarding tree.

One of the immediate consequences of the principle concerns the size of tables
used to forward multicast. Unlike conventional routing tables, each entry in a multicast
table is identified by a pair:

(multicast group, source)

Conceptually, source identifies a single host that can send datagrams to the group (i.e.,
any host in the internet). In practice, keeping a separate entry for each host is unwise
because the forwarding trees defined by all hosts on a single network are identical.
Thus, to save space, routing protocol use a network prefix as a source. That is, each
router defines one forwarding entry that is used for all hosts on the same physical net-
work.

Aggregating entries by network prefix instead of by host address reduces the table
size dramatically. However, multicast routing tables can grow much larger than con-
ventional routing tables. Unlike a conventional table in which the size is proportional
to the number of networks in the internet, a multicast table has size proportional to the
product of the number of networks in the internet and the number of multicast groups.

tA graph is a tree if it does not contain any cycles (i.e.. a router does not appear on more than one path).

338 Internet Multicasting Chap. 17
17.21 The Essence Of Multicast Routing

Observant readers may have noticed an inconsistency between the features of IP
multicasting and TRPF. We said that TRPF is used instead of conventional RPF to
avoid unnecessary traffic: TRPF does not forward a datagram to a network unless that
network leads to at least one member of the group. Consequently, a multicast router
must have knowledge of group membership. We also said that IP allows any host to
Join or leave a multicast group at any time, which results in rapid membership changes.
More important, membership does not follow local scope — a host that joins may be far
from some router that is forwarding datagrams to the group. So, group membership in-
formation ust be propagated across the internet.

The issue of membership is central to routing; all multicast routing schemes pro-
vide a mechanism for propagating membership information as well as a way to use the
information when forwarding datagrams. In general, because membership can change
rapidly, the information available at a given router is imperfect, so routing may lag
changes. Therefore, a multicast design represents a tradeoff between routing traffic
overhead and inefficient data transmission. On one hand, if group membership informa-
tion is not propagated rapidly, multicast routers will not make optimal decisions (i.e.,
they either forward datagrams across some networks unnecessarily or fail to send da-
tagrams to all group members). On the other hand, a multicast routing scheme that
communicates every membership change to every router is doomed because the result-
ing traffic can overwhelm an internet. Each design chooses a compromise between the
lwo extremes.

17.22 Reverse Path Multicasting

One of the earliest forms of multicast routing was derived from TRPF. Known as
Reverse Path Multicast (RPM), the scheme extends TRPF to make it more dynamic.
Three assumptions underlie the design. First, it is more important to ensure that a mul-
ticast datagram reaches each member of the group to which it is sent than to éliminate
unnecessary transmission. Second, multicast routers each contain a conventional rout-
ing table that has correct information. Third, multicast routing should improve efficien-
cy when possible (i.e. eliminate needless transmission).

RPM uses a two step process. When it begins, RPM uses the RPF broadcast
scheme to send a copy of each datagram across all networks in the internet. Doing so
ensures that all group members receive a copy. Simultaneously, RPM proceeds to have
multicast routers inform one another about paths that do not lead to group members.
Once it learns that no group members lie along a given path, a router stops forwarding
along that path.

How do routers learn about the location of group members? As in most multicast
routing schemes, RPM propagates membership information bottom-up. The informa-
tion starts with hosts that choose to join or leave groups. Hosts communicate member-
ship information with their local router by using IGMP. Thus, although a multicast

Sec. 17.22 Reverse Path Multicasting 339

router does not know about distant group members, it does know about local members
(i.e. members on each of its directly-attached networks). As a consequence, routers at-
tached to leaf networks can decide whether to forward over the leaf network — if a leaf
network contains no members for a given group, the router connecting that network to
the rest of the internet does not forward on the network. In addition to taking local ac-
tion, the leaf router informs the next router along the path back to the source. Once it
learns that no group members lie beyond a given network interface, the next router
slopé forwarding datagrams for the group across the network. When a router finds that
no group members lie beyond it, the router informs the next router along the path to the
root.

Using graph-theoretic terminology, we say that when a router learns that a group
has no members along a path and stops forwarding, it has pruned (i.e., removed) the
path from the forwarding tree. In fact, RPM is called a broadcast and prune strategy
because a router broadcasts (using RPF) until it receives information that allows it to
prune a path. Researchers also use another term for the RPM algorithm: they say that
the system is data-driven because a router does not send group membership information
to any other routers until datagrams arrive for that group.

In the data-driven model, a router must also handle the case where a host decides
to join a particular group after the router has pruned the path for that group. RPM han-
dles joins bottom-up: when a host informs a local router that it has joined a group, the
router consults its record of the group and obtains the address of the router to which it
had previously sent a prune request. The router sends a new message that undoes the
effect of the previous prune and causes datagrams to flow again. Such messages are
known as graft requests, and the algorithm is said to graft the previously pruned branch
back onto the tree.

17.23 Distance Vector Multicast Routing Protocol

One of the first multicast routing protocols is still in use in the global Internet.
Known as the Distance Vector Multicast Routing Protocol (DVMRP), the protocol al-
lows multicast routers to pass group membership and routing information among them-
selves. DVMRP resembles the RIP protocol described in Chapter 16, but has been ex-
tended for multicast. In essence, the protocol pglsses information about current multicast
group membership and the cost to transfer datagrams between routers. For each possi-
ble (group, source) pair, the routers impose a forwarding tree on top of the physical in-
terconnections. When a router receives a datagram destined for an IP multicast group,
it sends a copy of the datagram out over the network links that correspond to branches
in the forwarding tree?.

Interestingly, DVMRP defines an extended form of IGMP used for communication
between a pair of multicast routers. It specifies additional IGMP message types that al-
low routers to declare membership in a multicast group, leave a multicast group, and in-
terrogate other routers. The extensions also provide messages that carry routing infor-
mation, including cost metrics.

+DVMRP changed substantially between version 2 and 3 when it incorporated the RPM algorithm
described above.

340 Internet Multicasting Chap. 17
17.24 The Mrouted Program

Mrouted is a well-known program that implements DVMRP for UNIX systems.
Like routedt, mrouted cooperates closely with the operating system kernel to install
multicast routing information. Unlike routed, however, mrouted does not use the stan-
dard routing table. Instead, it can be used only with a special version of UNIX known
as a multicast kernel. A UNIX multicast kernel contains a special multicast routing
table as well as the code needed to forward multicast datagrams. Mrouted handles:

® Route propagation. Mrouted uses DVMRP to propagate multicast
_routing information from one router to another. A computer running
mrouted interprets multicast routing information, and constructs a mul-
ticast routing table. As expected, each entry in the table specifies a
(group, source) pair and a corresponding set of interfaces over which to
forward datagrams that match the entry. Mrouted does not replace
conventional route propagation protocols; a computer usually runs
mrouted in addition to standard routing protocol software.

® Multicast tunneling. One of the chief problems with internet multicast
arises because not all internet routers can forward multicast datagrams.
Mrouted can arrange to tunnel a multicast datagram from one router to
another through intermediate routers that do not participate in multicast
routing.

Although a single mrouted program can perform both tasks, a given computer may
not need both functions. To allow a manager to specify exactly how it should operate,
mrouted uses a configuration file. The configuration file contains entries that specify
which multicast groups mrouted is permitted to advertise on each interface, and how it
should forward datagrams. Furthermore, the configuration file associates a metric and
threshold with each route. The metric allows a manager to assign a cost to each path
(e.g., to ensure that the cost assigned to a path over a local area network will be lower
than the cost of a path across a slow serial link). The threshold gives the minimum IP
time to live (TTL) that a datagram needs to complete the path. If a datagram does not
have a sufficient TTL to reach its destination, a multicast kernel does not forward the
datagram. Instead, it discards the datagram, which avoids wasting bandwidth.

Multicast tunneling is perhaps the most interesting capability of mrouted. A tunnel
is needed when two or more hosts wish to participate in multicast applications, and one
or more routers along the path between the participating hosts do not run multicast rout-
ing software. Figure 17.10 illustrates the concept.

tRecall that routed is the UNIX program that implements RIP.

Sec. 17.24 The Mrouted Program 341

net 1 net 2

INTERNET
(with no support
for multicast)

R1 R2

Figure 17.10 An example internet configuration that requires multicast tun-
neling for computers attached to networks / and 2 to partici-
pate in multicast communication. Routers in the internet that
separates the two networks do not propagate multicast routes,
and cannot forward datagrams sent to a multicast address.

To allow hosts on networks / and 2 to exchange multicast, managers of the two
routers configure an mrouted tunnel. The tunnel merely consists of an agreement
between the mrouted programs running on the two routers to exchange datagrams.
Each router listens on its local net for datagrams sent to the specified multicast destina-
tion for which the tunnel has been configured. When a multicast datagram arrives that
ha« a destinztion address equal to one of the configured tunnels, mrouted encapsulates
tne datagram = a conventional unicast datagram and sends it across the internet to the
other router. When it receives a unicast datagram through one of its tunnels, mrouted
extracts the multicast datagram, and then forwards according to its multicast routing
table.

The encapsulation technique that mrouted uses to tunnel datagrams is known as
IP-in-IP. Figure 17.11 illustrates the concept.

DATAGRAM

HEADER MULTICAST DATAGRAM DATA AREA

DATAGRAM

HEADER UNICAST DATAGRAM DATA AREA

Figure 17.11 An illustration of [P-in-IP encapsulation in which one datagram
is placed in the data area of another. A pair of multicast
routers use the encapsulation to communicate when intermedi-
ate routers do not understand multicasting.

'
=
~

Internet Multicasting Chap. 17

As the figure shows, IP-in-IP encapsulation preserves the original multicast da-
tagram, including the header, by placing it in the data area of a conventional unicast da-
tagram. On the receiving machine, the multicast kernel extracts and processes the mul-
ticast datagram as if it arrived over a local interface. In particular, once it extracts the
multicast datagram, the receiving machine must decrement the time to live field in the
header by one before forwarding. Thus, when it creates a tunnel, mrouted treats the in-
ternet connecting two multicast routers like a single, physical network. Note that the
outer, unicast datagram has its own time to live counter, which operates independently
from the time to live counter in the multicast datagram header. Thus, it is possible to
limit the number of physical hops across a given tunnel independent of the number of
logical hops a multicast datagram must visit on its journey from the original source to
the ultimate destination.

Multicast tunnels form the basis of the Intermnet’s Multicast Backbone (MBONE).
Many Internet sites participate in the MBONE; the MBONE allow: hosts at participat-
ing sites to send and receive multicast datagrams. which are then propagated to all other
participating sites. The MBONE is often used to propagate audio and video (e.g., for
teleconferences).

To participate in the MBONE, a site must have at ieast one multicast router con-
nected to at least one local network. Another site must agree to tunnel traffic, and a
tunnel is configured between routers at the two sites. When a host at the site sends a
multicast datagram, the local router at the host’s site receives a copy, consults its multi-
cast routing table, and forwards the datagram over the tunnel using IP-in-IP. When it
receives a multicast datagram over a tunnel, a multicast router removes the outer encap-
sulation, and then forwards the datagram according to the local multicast routing table.

The easiest way to understand the MBONE is to think of it as a virtual network
built on top of the Internet (which is a virtual network). Conceptually, the MBONE
consists of multicast routers that are interconnected by a set of point-to-point networks.
Some of the conceptual point-to-point connections coincide with physical networks;
others are achieved by tunneling. The details are hidden from the multicast routing
software. Thus, when mrouted computes a multicast forwarding tree for a given
(group, source), it thinks of a tunnel as a single link connecting two routers.

Tunneling has two consequences. First, because some tunnels are much more ex-
pensive than others, they cannot all be treated equally. Mrouted handles the problem by
allowing a manager to assign a cost to each tunnel. and uses the costs when choosing
routes. Typically, a manager assigns a cost that reflects the number of hops in the
underlying internet. It is also possible to assign costs that reflect administrative boun-
daries (e.g., the cost assigned to a tunnel between two sites in the same company is as-
signed a much lower cost than a tunnel to another company). Second, because DVMRP
forwarding depends on knowing the shortest path to each source, and because multicast
tunnels are completely unknown to conventional routing protocols, DVMRP must com-
pute its own version of unicast forwarding that includes the tunnels.

Sec. 17.25 Alternative Protocols 343
17.25 Alternative Protocois

Although DVMRP has been used in the MBONE for many years, as the Internet
grew, the IETF became aware of its limitations. Like RIP, DVMRP uses a small value
for infinity. More important, the amount of information DVMRP keeps is overwhelm-
ing — in addition to entries for each active (group, source), it must also store entries for
previously active groups so it knows where to send a graft message when a host joins a
group that was pruned. Finally, DVMRP uses a broadcast-and-prune paradigm that
generates traffic on all networks until membership information can be propagated. Iron-
ically, DVMRP also uses a distance-vector algorithm to propagate membership informa-
tion, which makes propagation slow.

Taken together, the limitations of DVMRP mean that it cannot scale to handle a
large number of routers, larger numbers of multicast groups, or rapid changes in
membership. Thus, DVMRP is inappropriate as a general-purpose multicast routing
protocol for the global Internet.

To overcome the limitations of DVMRP, the IETF has investigated other multicast
protocols. Efforts have resulted in several designs, including Core Based Trees (CBT),
Protocol Independent Multicast (PIM), and Multicast extensions to OSPF (MOSPF).
Each is intended to handle the problems of scale, but does so in a slightly different way.
Although all these protocols have been implemented and both PIM and MOSPF have
been used in parts of the MBONE, none of them is a required standard.

17.26 Core Based Trees (CBT)

CBT avoids broadcasting and allows all sources to share the same forwarding tree
whenever possible. To avoid broadcasting, CBT does not forward multicasts along a
path until one or more hosts along that path join the multicast group. Thus, CBT rev-
erses the fundamental scheme used by DVMRP — instead of forwarding datagrams un-
til negative information has been propagated, CBT does not forward along a path until
positive information has been received. We say that instead of using the data-driven
paradigm, CBT uses a demand-driven paradigm.

The demand-driven paradigm in CBT means that when a host uses IGMP to join a
particular group, the local router must then inform other routers before datagrams will
be forwarded. Which router or routers should be informed? The question is critical in
all demand-driven multicast routing schemes. Recall that in a data-driven scheme, a
router uses the arrival of data traffic to know where to send routing messages (it pro-
pagates routing messages back over networks from which the traffic arrives). However,
in a positive-information scheme, no traffic will arrive for a group until the membership
information has been propagated.

CBT uses a combination of static and dynamic algorithms to build a multicast for-
warding tree. To make the scheme scalable, CBT divides the internet into regions,
where the size of a region is determined by network administrators. Within each re-
gion, one of the routers is designated as a core rouier, other routers in the region must

344 Internet Multicasting Chap. 17

either be configured to know the core for their region, or use a dynamic discovery
mechanism to find it. Tn any case, core discovery only occurs when a router boots.

Knowledge of a core is important because it allows multicast routers in a region to
form a shared tree for the region. As soon as a host joins a multicast group, the local
router that receives the host request, L, generates a CBT join request which it sends to
the core using conventional unicast routing. Each intermediate router along the path to
the core examines the request. As soon as the request reaches a router R that is already
part of the CBT shared tree. R returns an acknowledgement, passes the group member-
ship information on to its parent, and begins forwarding traffic for the group. As the
acknowledgement passes back to the leaf router, intermediate routers examine the mes-
sage, and configure their multicast routing table to forward datagrams for the group.
Thus, router L is linked into the forwarding tree at router R.

We can summarize:

Because CBT uses a demand-driven paradigm, it divides the internet
into regions and designates a core router for each region; other
routers in the region dynamically build a forwarding tree by sending
join requests fo the core.

CBT includes a facility for tree maintenance that detects when a link between a
pair of routers fails. To detect failure, each router periodically sends a CBT echo re-
quest to its parent in the tree (i.e., the next router along the path to the core). If the re-
quest is unacknowledged, CBT informs any routers that depend on it, and proceeds to
rejoin the tree at another point.

17.27 Protocol Independent Multicast (PIM)

In reality, PIM consists of two independent protocols that share little beyond the
name and basic message header formats: PIM - Dense Mode (PIM-DM) and PIM -
Sparse Mode (PIM-SM). The distinction arises because no single protocol works well
in all possible situations. In particular, PIM’s dense mode is designed for a LAN en-
vironment in which all, or nearly all, networks have hosts listening to each multicast
group: whereas, PIM’s sparse mode is deigned to accommodate a_wide area environ-
ment in which the members of a given multicast group occupy a small subset of all pos-
sible networks.

17.27.1 PIM Dense Mode (PIM-DM)

Because PIM’s dense mode assumes low-delay networks that have plenty of
bandwidth, the protocol has been optimized to guarantee delivery rather than to reduce
overhead. Thus. PIM-DM uses a broadcast-and-prune approach similar to DVMRP —
it begins by using RPF to broadcast each datagram to every group, and only stops send-
ing when it receives explicit prune requests.

Sec. 17.27 Protocol Independent Multicast (P1M)

(51
s
wn

17.27.2 Protocol Independence

The greatest difference between DVMRP and PIM dense mode arises from the in-
formation PIM assumes is available. In particular, in order to use RPF, PIM-DM dense
mode requires traditional unicast routing information — the shortest path to each desti-
nation must be known. Unlike DVMRP, however, PIM-DM does not contain facilities
to propagate conventional routes. Instead, it assumes the router also uses a convention-
al routing protocol that computes the shortest path to each destination, installs the route
in the routing table, and maintains the route over time. In fact, part of PIM-DM’s pro-
tocol independence refers to its ability to co-exist with standard routing protocols.
Thus, a router can use any of the routing protocols discussed (e.g., RIP, or OSPF) 0
maintain correct unicast routes, and PIM's dense mode can use routes produced by any
of them. To summarize:

Although it assumes a correct unicast routing table exists, PIM dense
mode does not propagate unicast routes. Instead, it assumes each
router also runs a conventional routing protocol which maintains the
unicast routes.

17.27.3 PIM Sparse Mode (PIM-SM)

PIM's sparse mode can be viewed as an extension of basic concepts from CBT.
Like CBT. PIM-SM is demand-driven. Also like CBT, PIM-SM needs a point to which
join messages can be sent. Therefore, sparse mode designates a router called a Rendez-
vous Point (RP) that is the functional equivalent of a CBT core. When a host joins a
multicast group, the local router unicasts a join request to the RP; routers along the path
examine the message, and if any router is already part of the tree, the router intercepts
the message and replies. Thus, PIM-SM builds a shared forwarding tree for each group
like CBT, and the trees are rooted at the rendezvous point¥.

The main conceptual difference between CBT and PIM-SM arises from sparse
mode’s ability to optimize connectivity through reconfiguration. For example, instead
of a single RP, each sparse mode router maintains a set of potential RP routers, with
one selected at any time. If the current RP becomes unreachable (e.g., because a net-
work failure causes disconnection), PIM-SM selects another RP from the set and starts
rebuilding the forwarding tree for each multicast group. The next section considers a
more significant reconfiguration.

17.27.4 Switching From Shared To Shortest Path Trees

In addition to selecting an alternative RP, PIM-SM can switch from the shared tree
to a Shortest Path tree (SP tree). To understand the motivation, consider the network
interconnection that Figure 17.12 illustrates.

+When an arbitrary host sends a datagram to a multicast group. the datagram is tunneled to the RP for the
group. which then multicasts the datagram down the shared tree.

346 Internet Multicasting Chap. 17

net 1
ﬂ é} ~-a—— Source ﬂ
net 2 X net3
Ry R,
net 4 net5
[] -— .iember
v R,
net7

Figure 17.12 A set of networks with a rendezvous point and a multicast
group that contains two members. The demand-driven strategy
of building a shared tree to the rendezvous results in nonop-
timal routing.

In the figure, router R, has been selected as the RP. Thus, routers join the shared
tree by sending along a path to R,. For example, assume hosts X and Y have joined a
particular multicast group. The path to the shared tree from host X consists of routers
R,, R, and R,, and the path from host Y to the shared tree consists of routers R,, R,. R,
and R,.

Although the shared tree approach forms shortest paths from each host to the RP, it
may not optimize routing. In particular, if group members are not close to the RP, the
inefficiency can be significant. For example, the figure shows that when host X sends a
datagram to the group, the datagram is routed from X to the RP and from the RP to Y.
Thus, the datagram must pass through six routers. However, the optimal (i.e., shortest)
path from X to Y only contains two routers (R, and R)).

PIM sparse mode includes a facility to allow a router to choose between the shared
tree or a shorest path tree to the source (sometimes called a source tree). Although
switching trees is conceptually straightforward, many details complicate the protocol.
For example, most implementations use the receipt of traffic to trigger the change — if
the traffic from a particular source exceeds a preset threshold, the router begins to estab-
lish a shortest patht. Unfortunately, traffic can change rapidly, so routers must apply
hysteresis to prevent oscillations. Furthermore, the change requires routers along the
shortest path to cooperate; all routers must agree to forward datagrams for the group.
Interestingly, because the change affects only a single source, a router must continue its
connection to the shared tree so it can continue to receive from other sources. More im-
portant, it must keep sufficient routing information to avoid forwarding multiple copies
of each datagram from a (group, source) pair for which a shortest path tree has been es-
tablished.

tThe implementation from at least one vendor starts building a shortest path immediately (i.e.. the traffic
threshold is zero).

Sec. 17.28 Multicast Extensions To OSPF (MOSPF) 347
17.28 Muiticast Extensions To OSPF (MOSPF)

So far, we have seen that multicast routing protocols like PIM can use information
from a unicast routing table to form delivery trees. Researchers have also investigated a
broader question: ‘‘how can multicast routing benefit from additional information that is
gathered by conventional routing protocols?’” In particular, a link state protocol such as
OSPF provides each router with a copy of the internet topology. More specifically,
OSPF provides the router with the topology of its OSPF area.

When such information is available, multicast protocols can indeed use it to com-
pute a forwarding tree. The idea has been demonstrated in a protocol known as Multi-
cast extensions to OSPF (MOSPF), which uses OSPF’s topology database to form a for-
warding tree for each source. MOSPF has the advantage of being demand-driven,
meaning that the traffic for a particular group is not propagated until it is needed (i.e.,
because a host joins or leaves the group). The disadvantage of a demand-driven scheme
arises from the cost of propagating routing information — all routers in an area must
maintain membership about every group. Furthermore, the information must be syn-
chronized to ensure that every router has exactly the same database. As a consequence,
MOSPF sends less data traffic, but sends more routing information than data-driven
protocols.

Although MOSPF’s paradigm of sending all group information to all routers works
within an area, it cannot scale to an arbitrary internet. Thus, MOSPF defines inter-area
multicast routing in a slightly different way. OSPF designates one or more routers in an
area to be an Area Border Router (ABR) which then propagates routing information to
other areas. MOSPF further designates one or more of the area’s ABRs to be a Multi-
cast Area Border Router MABR which propagates group membership information to
other areas. MABRs do not implement a symmetric transfer. Instead, MABRs use a
core approach — they propagate membership information from their area to the back-
bone area, but do not propagate information from the backbone down.

An MABR can propagate multicast information to another area without acting as
an active receiver for traffic. Instead, each area designates a router to receive multicast
on behalf of the area. When an outside area sends in multicast traffic, traffic for all
groups in the area is sent to the designated receiver, which is sometimes called a multi-
cast wildcard receiver. '

17.29 Reliable Multicast And ACK Implosions

The term reliable multicast refers to any system that uses multicast delivery, but
also guarantees that all group members receive data in order without any loss, duplica-
tion, or corruption. In theory, reliable multicast combines the advantage of a forward-
ing scheme that is more efficient than broadcast with the advantage of having all data
arrive intact. Thus, reliable multicast has great potential benefit and applicability (e.g.,
a stock exchange could use reliable multicast to deliver stock prices to many destina-
tions).

348 Internet Multicasting Chap. 17

In practice, reliable multicast is not as general or straightforward as it sounds.
First, if a multicast group has multiple senders, the notion of delivering datagrams *‘in
sequence’” becomes meaningless. Second, we have seen that widely used multicast for-
warding schemes such as RPF can produce duplication even on small internets. Third,
in addition to guarantees that all data will eventually arrive, applications like audio or
video expect reliable systems to bound the delay and jitter. Fourth, because reliability
requires acknowledgements and a multicast group can have an arbitrary number of
members, traditional reliable protocols require a sender to handle an arbitrary number of
acknowledgements. Unfortunately, no computer has enough processing power to do so.
We refer to the problem as an ACK implosion; it has become the main focus of much
research.

To overcome the ACK implosion problem, reliable multicast protocols take a
hierarchical approach in which multicasting is restricted to a single sourcef. Before
data is sent, a forwarding tree is established from the source to all group members, and
acknowledgement points must be identified.

An acknowledgement point, which is also known as an acknowledgement aggrega-
tor or designated router (DR), consists of a router in the forwarding tree that agrees to
cache copies of the data and process acknowledgements from routers or hosts further
down the tree. If a retransmission is required, the acknowledgement point obtains a
copy from its cache.

Most reliable multicast schemes use negative rather than positive acknowledge-
ments — the host does not respond unless a datagram is lost. To allow a host to detect
loss, each datagram must be assigned a unique sequence number. When it detects loss,
a host sends a NACK to request retransmission. The NACK propagates along the for-
warding tree toward the source until it reaches an acknowledgement point. The ack-
nowledgement point processes the NACK, and retransmits a copy of the lost datagram
along the forwarding trec.

How does an acknowledgement point ensure that it has a copy of all datagrams in
the sequence? It uses the same scheme as a host. When a datagram arrives, the ack-
nowledgement point checks the sequence number, places a copy in its memory, and
then proceeds to propagate the datagram down the forwarding tree. If it finds that a da-
tagram is missing, the acknowledgement point sends a NACK up the tree toward the
source. The NACK either reaches another acknowledgement point that has a copy of
the datagram (in which case that acknowledgement point transmits a second copy), or
the NACK reaches the source (which retransmits the missing datagram).

The choice of branching topology and acknowledgement points is crucial to the
success of a reliable multicast scheme. Without sufficient acknowledgement points, a
missing datagram can cause an ACK implosion. In particular, if a given router has
many descendants, a lost datagram can cause that router to be overrun with retransmis-
sion requests. Unfortunately, automating selection of acknowledgement points has not
turned out to be simple. Consequently, many reliable multicast protocols require manu-
al configuration. Thus, multicast is best suited to: services that tend to persist over long
periods of time, topologies that do not change rapidly, and situations where intermediate
routers agree to serve as acknowledgement points.

+Note that a single source does not limit functionality because the source can agree to forward any mes-
sage it receives via unicast. Thus, an arbitrary host can send a packet to the source. which then multicasts the
packet to the group.

Sec. 17.29 Reliable Multicast And ACK Implosions 349

Is there an alternative approach to reliability? Some researchers are experimenting
with protocols that incorporate redundant information to reduce or eliminate retransmis-
sion. One scheme sends redundant datagrams. Instead of sending a single copy of each
datagram, the source sends N copies (typically 2 or 3). Redundant datagrams work
especially well when routers implement a Random Early Discard (RED) strategy be-
cause the probability of more than one copy being discarded is extremely small.

Another approach to redundancy involves forward error-correcting codes. Analo-
gous to the error-correcting codes used with audio CDs, the scheme requires a sender to
incorporate error-correction information into each datagram in a data stream. If one da-
tagram is lost, the error correcting code contains sufficient redundant information to al-
low a receiver to reconstruct the missing datagram without requesting a retransmission.

17.30 Summary

IP multicasting is an abstraction of hardware multicasting. It allows delivery of a
datagram to multiple destinations. IP uses class D addresses to specify multicast
delivery; actual transmission uses hardware multicast, it it is available.

IP multicast groups are dynamic: a host can join or leave a group at any time. For
local multicast, hosts only need the ability to send and receive multicast datagrams.
However, IP multicasting is not limited to a single physical network — multicast routers
propagate group membership information and arrange routing so that each member of a
multicast group receives a copy of every datagram sent to that group.

Hosts communicate their group membership to multicast routers using IGMP.
IGMP has been designed to be efficient and to avoid using network resources. In most
cases, the only traffic IGMP introduces is a periodic message from a multicast router
and a single reply for each multicast group to which hosts on that network belong.

A variety of protocols have been designed to propagate multicast routing informa-
tion across an internet. The two basic approaches are data-driven and demand-driven.
In either case, the amount of information in a multicast forwarding table is much larger
than in a unicast routing table because multicasting requires entries for each
(group, source) pair.

Not all routers in the global Internet propagate multicast routes or forward multi-
cast traffic. Groups at two or more sites, separated by an internet that does not support
multicast routing, can use an IP tunnel to transfer multicast datagrams. When using a
tunnel, a program encapsulates a multicast datagram in a conventional unicast datagram.
The receiver must extract and handle the multicast datagram.

Reliable multicast refers to a scheme that uses multicast forwarding but offers reli-
able delivery semantics. To avoid the ACK implosion problem, reliable multicast
schemes either use a hierarchy of acknowledgement points or send redundant informa-
tion.

350 Internet Multicasting Chap. 17

FOR FURTHER STUDY

Deering [RFC 2236] specifies the standard for IP multicasting described in this
chapter, which includes version 2 of IGMP. Waitzman, Partridge, and Deering [RFC
1075] describes DVMRP, Estrin et. al. [RFC 2362] describes PIM sparse mode, Ballar-
die [RFCs 2189 2201] describes CBT, and Moy [RFC 1585] describes MOSPF.

Eriksson [1994] explains the multicast backbone. Casner and Deering [July 1992]
reports on the first multicast of an IETF meeting.

EXERCISES

17.1 The standard suggests using 23 bits of an IP multicast address to form a hardware multi-
cast address. In such a scheme, how many IP multicast addresses map to a single
hardware multicast address?

17.2 Argue that IP multicast addresses should use only 23 of the 28 possible bits. Hint: what
are the practical limits on the number of groups to which a host can belong and the
number of hosts on a single network?

17.3 IP must always check the destination addresses on incoming multicast datagrams and
discard datagrams if the host is not in the specified multicast group. Explain how the
host might receive a multicast destined for a group to which that host is not a member.

174 Multicast routers need to know whether a group has members on a given network. Is
there any advantage to them knowing the exact set of hosts on a network that belong to a
given multicast group?

17.5 Find three applications in your environment that can benefit from IP multicast.

17.6 The standard says that IP software must arrange to deliver a copy of any outgoing multi-
cast datagram to application programs on the host that belong to the specified multicast
group. Does this design make programming easier or more difficult? Explain.

17.7 When the underlying hardware does not support multicast, IP multicast uses hardware
broadcast for delivery. How can doing so cause problems? Is there any advantage to
using IP multicast over such networks?

17.8 DVMRP was derived from RIP. Read RFC 1075 on DVMRP and compare the two pro-
tocols. How much more complex is DVMRP than RIP?

17.9 IGMP does not include a strategy for acknowledgement or retransmission, even when
used on networks that use best-effort delivery. What can happen if a query is lost?
What can happen if a response is lost?

17.10 Explain why a multi-homed host may need to join a multicast group on one network, but
not on another. (Hint: consider an audio teleconference.)

17.11 Estimate the size of the multicast forwarding table needed to handle multicast of audio

from 100 radio stations, if each station has a total of ten million listeners at random loca-
tions around the world.

Exercises 351

17.12

17.13

17.14

17.15

17.16

Argue that only two types of multicast are practical in the Internet: statically configured
commercial services that multicast to large numbers of subscribers and dynamically con-
figured services that include a few participants (e.g., family members in three households
participating in a conference phone call).

Consider reliable multicast achieved through redundant transmission. If a given link has
high probability of corruption, is it better to send redundant copies of a datagram or to
send one copy that uses forward error-correcting codes? Explain.

The data-driven multicast routing paradigm works best on local networks that have low
delay and excess capacity, while the demand-driven paradigm works best in a wide area
environment that has limited capacity and higher delay. Does it make sense to devise a
single protocol that combines the two schemes? Why or why not. (Hint: investigate
MOSPF.)

Devise a quantitative measure that can be used to decide when PIM-SM should switch
from a shared tree to a shortest path tree.
Read the protocol specification to find out the notion of “‘sparse’” used in PIM-SM.

Find an example of an internet in which the population of group members is sparse, but
for which DVMREP is a better multicast routing protocol.

18

TCP/IP Over ATM Networks

18.1 Introduction

Previous chapters explain the fundamental parts of TCP/IP and show how the com-
ponents operate over conventional LAN and WAN technologies. This chapter explores
how TCP/IP, which was designed for connectionless networks, can be used over a
connection-oriented technologyf. We will see that TCP/IP is extremely flexible — a
few of the address binding details must be modified for a connection-oriented environ-
ment, but most protocols remain unchanged.

The challenge arises when using TCP/IP over Non-Broadcast Multiple-Access
(NBMA) networks (i.e., connection-oriented networks which allow multiple computers
to attach, but do not support broadcast from one computer to all others). We will see
that an NBMA environment requires modifications to IP protocols such as ARP that
rely on broadcast.)

To make the discussion concrete and relate it to available hardware, we will use
Asynchronous Transfer Mode (ATM) in all examples. This chapter expands the brief
description of ATM in Chapter 2, and covers additional details. The next sections
describe the physical topology of an ATM network, the logical .onnectivity provided,
ATM’s connection paradigm, and the ATM adaptation protocol used to transfer data.
Later sections discuss the relationship between ATM and TCP/IP. They explain ATM
addressing, and show the relationship between a host’s ATM address and its IP address.
They also describe a modified form of the Address Resolution Protocol (ARP) used to
resolve an IP address across a connection-oriented network, and a modified form of In-
verse ARP that a server can use to obtain and manage addresses. Most important, we
will see how IP datagrams travel across an ATM network without IP fragmentation.

+Some documents use the abbreviation CL for connectionless and CO for connection-oriented.

353

354 TCP/IP Over ATM Networks Chap. 18
18.2 ATM Hardware

Like most connection-oriented technologies, ATM uses special-purpose electronic
switches as the basic network building block. The switches in an ATM LAN usually
provide connections for between 16 and 32 computers.t Although it is possible to use
copper wiring between a host and an ATM switch, most installations use optical fiber to
provide higher data rates. Figure 18.1 shows a diagram of an ATM switch with com-
puters connected, and explains the connection.

computer attached
to switch

ATM SWITCH fiber to — o || o fiber from

switch switch

(a) (b)

Figure 18.1 (a) The schematic diagram of a single ATM switch with four
computers attached, and (b) the details of each connection. A
pair of optical fibers carries data to and from the switch.

Physically, a host interface board plugs into a computer’s bus. The interface
hardware includes optical transmitters and receivers along with the circuitry needed to
convert between electrical signals and the pulses of light that travel down the fiber to
the switch. Because each fiber is used to carry light in only one direction, a connection
that allows a computer to both send and receive data requires a pair of fibers.

18.3 Large ATM Networks

Although a single ATM switch has finite capacity, multiple switches can be inter-
connected to form a larger network. In particular, to connect computers at two sites to
the same network, a switch can be installed at each site, and the two switches can then
be connected. The connection between two switches differs slightly from the connec-
tion between a host computer and a switch. For example, interswitch connections usu-
ally operate at higher speeds, and use slightly modified protocols. Figure 18.2 illus-
trates the topology, and shows the conceptual difference between a Network to Network
Interface (NNI) and a User to Network Interface (UNI).

tSwitches used in larger networks provide more connections: «he point is that the number of computers
attached to a given switch is limited.

Sec. 18.3 Large ATM Networks 355

NNI or UNI used between UNI used between
two ATM switches switch and a computer
ATM SWITCH ATM SWITCH ATM SWITCH

O O 4 O

Figure 18.2 Three ATM switches combined to form a large network.
Although an NNI interface is designed for use between switches,
UNI connections can be used between ATM switches in a
private network.

18.4 The Logical View Of An ATM Network

The goal of ATM is an end-to-end communication system. To a computer at-
tached to an ATM network, an entire fabric of ATM switches appears to be a homo-
geneous network. Like the voice telephone system, a bridged Ethernet, or an IP inter-
net, ATM hides the details of physical hardware and gives the appearance of a single,
physical network with many computers attached. For example, Figure 18.3 illustrates
how the ATM switching system in Figure 18.2 appears logically to the eight computers

that are attached to it.

o Ao
Lo

Figure 18.3 The logical view of the ATM switches in Figure 18.2. ATM
gives the appearance of a uniform network; any computer can
communicate with any other computer.

Thus, ATM provides the same general abstraction across homogeneous ATM
hardware that TCP/IP provides for heterogeneous systems:

Despite a physical architecture that permits a switching fabric to con-
tain multiple switches, ATM hardware provides attached computers
with the appearance of a single, physical network. Any computer on
an ATM network can communicate directly with any other; the com-
puters remain unaware of the physical network structure.

356 TCP/IP Over ATM Networks Chap. 18
18.5 The Two ATM Connection Paradigms

ATM provides a connection-oriented interface to attached hosts. That is, before it
can send data to a remote destination, a host must establish a connection, an abstraction
analogous to a telephone call. Although there is only one type of underlying connec-
tion, ATM offers two ways to create a connection. The first is known as a Permanent
Virtual Circuitt (PVC), and the second is known as a Switched Virtual Circuirt (SVC).

18.5.1 Permanent Virtual Circuits

In telephone jargon, a PVC is said to be a provisioned service. Provisioning sim-
ply means that a person is required to enter the necessary configuration manually into
each switch along the path from the source to the destination (e.g., by typing into the
console on each switch). Although the terms PVC and provisioned service may sound
esoteric, the concept is not; even the most basic connection-oriented hardware supports
PVCs.

On one hand, manual configuration has an obvious disadvantage: it cannot be
changed rapidly or easily. Consequently, PVCs are only used for connections that stay
in place for relatively long periods of time (weeks or years). On the other hand, manual
configuration has advantages: a PVC does not require all switches to agree on a stan-
dard signaling mechanism. Thus, switches from two or more vendors may be able to
interoperate when using PVCs, even if they cannot when using SVCs. Second, PVCs
are often required for network management, maintenance, and debugging operations.

18.5.2 Switched Virtual Circuits

Unlike a PVC, an SVC is created automatically by software, and terminated when
no longer needed. Software on a host initiates SVC creation; it passes a request to the
local switch. The request includes the compiete address of a remote host computer with
which an SVC is needed and parameters that specify the quality of service required
(e.g., the bandwidth and delay). The host then waits for the ATM network to create a
circuit and respond. The ATM signalingt system establishes a path from the originat-
ing host across the ATM network (possibly through multiple switches) to the remote
host computer.

During signaling, each ATM switch along the path and the remote computer must
agree to establiish the virtual circuit. When it agrees, a switch records information about
the circuit, reserves the necessary resources, and sends the request to the next switch
along the path. Once all the switches and th.. remote computer respond, signaling com-
pletes, and the switches at each end of the connection report to the hosts that the virtual
circuit is in place.

Like all abstractions, connections must be identified. The UNI interface uses a
24-bit integer to identify each virtual circuit. When administrators create PVCs, they
assign an identifier to each. When software on a host creates a new SVC, the local
ATM switch assigns an identifier and informs the he-i. Unlike connectionless technolo-

+Although the ATM standard uses the term virtual channel, we will follow common practice and call it a
virtual circuit.
{The term signaling derives from telephone jare.sn.

Sec. 18.5 The Two ATM Conrection Paradigms 357

gics, a connection-oriented system does not require each packet to carry either a source
or destination address. Instead, a host places a circuit identifier in each outgoing pack-
ct. and the switch places a circuit identifier in each packet it delivers.

18.6 Paths, Circuits, And Identifiers

We said that a connection-oriented technology assigns a unique integer identifier to
cach circuit, and that a host uses the identifier when performing 1/O operations or when
closing the circuit. However, connection-oriented systems do not assign each circuit a
globally unique identifier. Instead, the identifier is analogous to an 1/O descriptor that
is assigned to a program by the operating system. Like an /O descriptor, a circuit iden-
tifier is a shorthand that a program uses in place of the full information that was used to
create the circuit. Also like an /O descriptor, a circuit identifier only remains valid
while the circuit is open. Furthermore, & circuit identifier is meaningful only across a
single hop — the circuit identifiers obtained by hosts at the two ends of a given virtual
circuit usually differ. For example, the sender may be using identifier /7 while the re-
ceiver uses identifier 49; each switch along the path translates the circuit identifier in a
packet as the packet flows from one host to the other.

Technically. a circuit identifier used with the UNI interface consists of a 24-bit in-
teger divided into two fieldst. Figure 18.4 shows how ATM partitions the 24 bits into
an 8-bit virtual path identifier (VPI) and a 16-bit virtual circuit identifier (VCI). Often,
the entire identifier is referred to as a VPI/VCI pair.

VPl FIELD VCI FIELD

r 8 BITS 16 BITS

- 24-BIT CONNECTION ID e

Figure 18.4 The 24-bit connection identifier used with UNIL. The identifier is
divided into virtual path and virtual circuit parts.

The motivation for dividing a connection identifier into VPI and VCI fields is
similar to the reasons for dividing an IP address into network and host fields. 1If a set of
virtual circuits follows the same path. an administrator can arrange for all circuits in the
set to use the same VPI. ATM hardware can then use the VPI to route traffic efficient-
ly. Commercial carriers can also use the VPI for accounting — a carrier can charge a
customer for a virtual path, and then allow the customer to decide how to multiplex
multiple virtual circuits over the path.

+The circuit identifier used with NNT has a slightly ditferent format and a different length.

358 TCP/IP Over ATM Networks Chap. 18
18.7 ATM Cell Transport

At the lowest level, an ATM network uses fixed-size frames called cells to carry
data. ATM requires all cells to be the same size because doing so makes it possible to
build faster switching hardware and to handle voice as well as data. Each ATM cell is
53 octets long, and consists of a 5-octet header followed by 48 octets of payload (i.e.
data). Figure 18.5 shows the format of a cell header.

0 1 2 3 4 5 6 7

FLOW CONTROL VP (FIRST 4 BITS)
VPI (LAST 4 BITS) Vel (FIRST 4 BITS)
VCI (MIDDLE 8 BITS)

VCI(LAST4BITS) - PAYLOAD TYPE PRIO

CYCLIC REDUNDANCY CHECK

Figure 18.5 The format of the five-octet UNI cell header used between a host
and a switch. The diagram shows one octet per line; forty-eight
octets of data follow the header.

18.8 ATM Adaptation Layers

Although ATM switches small cells at the lowest level, application programs that
transfer data over ATM do not read or write cells. Instead, a computer interacts with
ATM through an ATM Adaptation Layer, which is part of the ATM standard. The
adaptation layer performs several functions, including detection and correction of errors
such as lost or corrupted cells. Usually, firmware that implements an ATM adaptation
layer is located on a host interface along with hardware and firmware that provide cell
transmission and reception. Figure 18.6 illustrates the organization of a typical ATM
interface, and shows how data passes from the computer’s operating system through the
interface board and into an ATM network.

Sec. 18.8

When establishing a connection,

ATM Adaptation Layers

DEVICE DRIVER

)

ADAPTATION LAYER

P 1

CELL TRANSPORT

i 1

OPTICAL COMM.

1

359

software in
host computer

host interface

=~ board

l ‘4———————— optical fiber

Figure 18.6 The conceptual organization of ATM interface hardware and the

flow of data through it. Software on a host interacts with an
adaptation layer protocol to send and receive data; the adaptation
layer converts to and from cells.

a host must specify which adaptation layer proto-

col to use. Both ends of the connection must agree on the choice, and the adaptation
layer cannot be changed once the connection has been established. To sumrarize:

Although ATM hardware uses small, fixed-size cells to transport data,

a high

er layer protocol called an ATM Adaptation Layer provides

data transfer services for computers that use ATM. When a virtual

circuit is created, both ends of the circuit must agree on which adap-
tation layer protocol will be used.

360 TCP/IP Over ATM Networks Chap. 18
18.9 ATM Adaptation Layer 5

Computers use ATM Adaptation Layer 5 (AALS) to send data across an ATM net-
work. Interestingly, although ATM uses small fixed-size cells at the lowest level,
AALS presents an interface that accepts and delivers large, variable-length packets.
Thus, the interface computers use to send data makes ATM appear much like a connec-
tionless technology. In particular, AALS allows each packet to contain between | and
65,535 octets of data. Figure 18.7 illustrates the packet format that AALS uses.

Between 1 and 65,535 8-octet
octets of data trailer

' '
]

(a)

8-BIT | 8-BIT 16-BIT 32-BIT
uu (o] LENGTH FRAME CHECKSUM

(b)

Figure 18.7 (a) The basic packet format that AALS accepts and delivers, and
(b) the fields in the 8-octet trailer that follows the data.

Unlike most network frames that place control information in a header, AALS
places control information in an 8-octet trailer at the end of the packet. The AALS
trailer contains a 16-bit length field, a 32-bit cyclic redundancy check (CRC) used as a
frame checksum, and two 8-bit fields labeled UU and CPI that are gurrently unusedt.

Each AALS packet must be divided into cells for transport across an ATM net-
work, and then must be recombined to form a packet before being delivered to the re-
ceiving host. If the packet, including the 8-octet trailer, is an exact multiple of 48 oc-
tets, the division will produce completely full cells. If the packet is not an exact multi-
ple of 48 octets, the final cell will not be full. To accommodate arbitrary length pack-
ets, AALS allows the final cell to contain between 0 and 40 octets of data, followed by
zero padding, followed by the 8-octet trailer. In other words, AALS places the trailer in
the last 8 octets of the final cell, where it can be found and extracted without knowing
the length of the packet.

tField UU can contain any value; field CPI must be set to zero.

Sec. 18.10 AALS Convergence, Segmentation, And Reassembly 361
18.10 AALS5 Convergence, Segmentation, And Reassembly

When an application sends data over an ATM connection using AALS, the host
delivers a block of data to the AALS interface. AALS generates a trailer, divides the in-
formation into 48-octet pieces, and transfers each piece across the ATM network in a
single cell. On the receiving end of the connection, AALS reassembles incoming cells
into a packet, checks the CRC to ensure that all pieces arrived correctly, and passes the
resulting block of data to the host software. The process of dividing a block of data
into cells and regrouping them is known as ATM segmentation and reassemblyt (SAR).

By separating the functions of segmentation and reassembly from cell transport,
AALS follows the layering principle. The ATM cell transfer layer is classified as
machine-to-machine because the layering principle applies from one machine to the next
(e.g., between a host and a switch or between two switches). The AALS layer is classi-
fied as end-to-end because the layering principle applies from the source to the destina-
tion — AALS presents the receiving software with data in exactly the same size blocks
as the application passed to AALS on the sending end.

How does AALS on the receiving side know how many cells comprise a packet?
The sending AALS uses the low-order bit of the PAYLOAD TYPE field of the ATM cell
header to mark the final cell in a packet. One can think of it as an end-of-packet bit.
Thus, the receiving AALS collects incoming cells until it finds one with the end-of-
packet bit set. ATM standards use the term convergence to describe mechanisms that
recognize the end of a packet. Although AALS uses a single bit in the cell header for
convergence, other ATM adaptation layer protocols are free to use other convergence
mechanisms.

To summarize:

A computer uses ATM Adaptation Layer 5 to transfer a large block of
data over an ATM virtual circuit. On the sending host, AALS gen-
erates a trailer, segments the block of data into cells, and transmits
each cell over the virtual circuit. On the receiving host, AALS
reassembles the cells to reproduce the original block of daia, strips
off the trailer, and delivers the block of data to the receiving host
software. A single bit in the cell header marks the final cell of a
given data block.

18.11 Datagram Encapsulation And IP MTU Size

We said that IP uses AALS to transfer datagrams across an ATM network. Before
data can be sent, a virtual circuit (PVC or SVC) must be in place to the destination
computer and both ends must agree to use AALS on the circuit. To transfer a datagram,
the sender passes it to AALS along with the VPI/VCI identifying the circuit. AALS5
generates a trailer, divides the datagram into cells, and transfers the cells across the net-

tUse of the term reassembly suggests the strong similarity between AALS segmentation and IP fragmen-
tation: both mechanisms divide a large block of data into smaller units for transfer.

362 TCP/IP Over ATM Networks Chap. 18

work. At the receiving end, AALS reassembles the cells, checks the CRC to verify that
no bits were lost or corrupted, extracts the datagram, and passes it to IP.

In reality, AALS uses a 16-bit length field, making it possible to send 64K octets
in a single packet. Despite the capabilities of AALS, TCP/IP restricts the size of da-
tagrams that can be sent over ATM. The standards impose a default of 9180 octetst per
datagram. As with any network interface, when an outgoing datagram is larger than the
network MTU, IP fragments the datagram, and passes each fragment to AALS. Thus,
AALS accepts, transfers, and delivers datagrams of 9180 octets or less. To summarize:

When TCP/IP sends data across an ATM network, it transfers an en-
tire datagram using ATM Adaptation Layer S. Although AALS can
accept and transfer packets that contain up to 64K octets, the TCP/IP
standards specify a default MTU of 9180 octets. IP must fragment
any datagram larger than 9180 octets before passing it to AALS.

18.12 Packet Type And Multiplexing

Observant readers will have noticed that the AALS trailer does not include a fype
field. Thus, an AALS frame is not self-identifying. As a result, the simplest form of
encapsulation described above does not suffice if the two ends want to send more than
one type of data across a single VC (e.g., packets other than IP). Two possibilities ex-
1St:

e The two computers at the ends of a virtual circuit agree a priori that the cir-
cuit will be used for a specific protocol (e.g., the circuit will only be used to
send IP datagrams).

e The two computers at the ends of a virtual circuit agree a priori that some
octets of the data area will be reserved for use as a type field.

The former scheme, in which the computers agree on the high-level protocol for a
given circuit, has the advantage of not requiring additional information in a packet. For
example, if the computers agree to transfer TP, a sender can pass each datagram directly
to AALS to transfer; nothing needs to be sent besides the datagram and the AALS
trailer. The chief disadvantage of such a scheme lies in duplication of virtual circuits: a
computer must create a separate virtual circuit for each high-level protocol. Because
most carriers charge for each virtual circuit, customers try to avoid using muitiple cir-
cuits because it adds unnecessary cost.

The latter scheme, in which two computers use a single virtual circuit for multiple
protocols, has the advantage of allowing all traffic to travel over the same circuit, but
the disadvantage of requiring each packet to contain octets that identify the protocol
type. The scheme also has the disadvantage that packets from all protocols travel with
the same delay and priority.

+The size 9180 was chosen to make ATM compatible with an older technology called Switched Multime-
gabit Data Service (SMDS); a value other than 9180 can be used if both ends agree.

Sec. 18.12 Packet Type And Multiplexing 363

The TCP/IP standards specify that computers can choose between the two methods
of using AALS5. Both the sender and receiver must agree on how the circuit will be
used; the agreement may involve manual configuration. Furthermore, the standards
suggest that when computers choose to include type information in the packet, they
should use a standard IEEE 802.2 Logical Link Control (LLC) header followed by a
SubNetwork Attachment Point (SNAP) header. Figure 18.8 illustrates the LLC/SNAP
information prefixed to a datagram before it is sent over an ATM virtual circuit.

0 16 31
LLC (AA.AA.03) | ouly (00)
OUl, (00.00) TYPE (08.00)
IP DATAGRAM

Figure 18.8 The packet format used to send a datagram over AALS when
multiplexing multiple protocols on a single virtual circuit. The
8-octet LLC/SNAP header identifies the contents as an IP da-
tagram. -

As the figure shows, the LLC field consists of three octets that contain the hexade-
cimal values AA.AA.03f. The SNAP header consists of five octets: three that contain
an Organizationally Unique ldentifier (OUI) and two for a typef. Field OUI identifies
an organization that administers values in the TYPE field, and the TYPE field identifies
the packet type. For an IP datagram, the OUI field contains 00.00.00 to identify the or-
ganization responsible for Ethernet standards, and the TYPE field contains 08.00, the
value used when encapsulating IP in an Ethernet frame. Software on the sending host
must prefix the LLC/SNAP header to each packet before sending it to AALS, and
software on the receiving host must examine the header to determine how to handle the
packet.

18.13 IP Address Binding In An ATM Network

We have seen that encapsulating a datagram for transmission across an ATM net-
work is straightforward. By contrast, IP address binding in a Non-Broadcast Multiple-
Access (NBMA) environment can be difficult. Like other network technologies, ATM
assigns each attached computer a physical address that must be used when establishing
a virtual circuit. On one hand, because an ATM physical address is larger than an IP
address, an ATM physical address cannot be encoded within an IP address. Thus, IP
cannot use static address binding for ATM networks. On the other hand, ATM

1The notation represents each octet as a hexadecimal value separated by decimal points.
1To avoid unnecessary fragmentation, the eight octets of an LLC/SNAP header are ignored in the MTU
computation (i.e., the effective MTU of an ATM connection that uses an LLC/SNAP header is 9188).

364 TCP/IP Over ATM Networks Chap. 18

hardware does not support broadcast. Thus, IP cannot use conventional ARP to bind
addresses on ATM networks.

ATM permanent virtual circuits further complicate address binding. Because a
manager configures each permanent virtual circuit manually, a host only knows the
circuit’s VPI/VCI pair. Software on the host may not know the 1P address nor the
ATM hardware address of the remote endpoint. Thus, an IP address binding mechan-
ism must provide for the identification of a remote computer connected over a PVC as
well as the dynamic creation of SVCs to known destinations.

Switched connection-oriented technologies further complicate address binding be-
cause they require two levels of binding. First, when creating a virtual circuit over
which datagrams will be sent, the IP address of the destination must be mapped to an
ATM endpoint address. The endpoint address is used to create a virtual circuit.
Second, when sending a datagram to a remote computer over an existing virtual circuit,
the destination’s IP address must be mapped to the VPI/VCI pair for the circuit. The
second binding is used each time a datagram is sent over an ATM network; the first
binding is necessary only when a host creates an SVC.

18.14 Logical IP Subnet Concept

Although no protocol has been proposed to solve the general case of address bind-
ing for NBMA networks like ATM, a protocol has been devised for a restricted form.
The restricted form arises when a group of computers uses an ATM network in place of
a single (usually local) physical network. The group forms a Logical IP Subnet (LIS).
Multiple logical TP subnets can be defined among a set of computers that all attach to
the same ATM hardware network. For example, Figure 18.9 illustrates eight computers
attached to an ATM network divided into two LIS.

A B@ c

oF— ATM NETWORK Y

Figure 18.9 Eight computers attached to an ATM network participating in
two Logical IP Subnets. Computers marked with a slash partici-
pate in one LIS, while computers marked with a circle partici-
pate in the other LIS.

Sec. 18.14 Logical IP Subnet Concept 365

As the figure shows, all computers attach to the same physical ATM network.
Computers A, C, D, E, and F participate in one LIS, while computers B, F, G, and H
participate in another. Each logical IP subnet functions like a separate LAN. The com-
puters participating in an LIS establish virtual circuits among themselves to exchange
datagramst. Because each LIS forms a conceptually separate network. IP applies the
standard rules for a physical network to each LIS. For example, all computers in an
LIS share a single IP network prefix, and that prefix differs from the prefixes used by
other logical subnets. Furthermore, although the computers in an LIS can choose a non-
standard MTU, all computers must use the same MTU on all virtual circuits that
comprise the LIS. Finally, despite the ATM hardware that provides potential connec-
tivity, a host in one LIS is forbidden from communicating directly with a host in anoth-
er LIS. Instead, all communication between logical subnets must proceed through a
router just as communication between two physical Ethernets proceeds through a router.
In Figure 18.9, for example, machine F represents an IP router because it participates in
both logical subnets.

To summarize:

TCP/IP allows a subset of computers attached to an ATM network to
operate like an independent LAN. Such a group is called a Logical 1P
Subnet (LIS); computers in an LIS share a single 1P network prefix.
A computer in an LIS can communicate directly with any other com-
puter in the same LIS, but is required to use a router when communi-
cating with a computer in another LIS.

18.15 Connection Management

Hosts must manage ATM virtual circuits carefully becavse creating a circuit takes
time and, for commercial ATM services, can incur additional economic cost. Thus, the
simplistic approach of creating a virtual circuit, sending one datagram, and then closing
the circuit is 100 expensive. Instead, a host must maintain a record of open circuits $o
they can be reused.

Circuit management occurs in the network interface software below IP. When a
host needs to send a datagram, it uses conventional IP routing to find the appropriate
next-hop address, Ni, and passes it along with the datagram to the network interface.
The network interface examines its table of open virtual circuits. If an open circuit ex-
ists to N, the host uses AALS to send the datagram. Otherwise, before the host can
send the datagram, it must locate a computer with IP address N, create a circuit, and add
the circuit to its table.

The concept of logical IP subnets constrains IP routing. In a properly configured
routing table, the next-hop address for each destination must be a computer within the
same logical subnet as the sender. To understand the constraint, remember that each
LIS is designed to operate like a single LAN. The same constraint holds for a host at-

TThe standard specifies the use of LLC/SNAP encapsulation within an LIS.
tAs usual, a next-hop address is an IP address.

366 TCP/IP Over ATM Networks Chap. 18

tached to a LAN, namely, each next-hop address in the routing table must be a router
attached to the LAN.

One of the reasons for dividing computers into logical subnets arises from
hardware and software constraints. A host cannot maintain an arbitrarily large number
of open virtual circuits at the same time because each circuit requires resources in the
ATM hardware and in the operating system. Dividing computers into logical subnets
limits the maximum number of simultaneously open circuits to the number of comput-
ers in the LIS.

18.16 Address Binding Within An LIS

When a host creates a virtual circuit to a computer in its LIS, the host must specify
an ATM hardware address for the destination. How can a host map a next-hop address
into an appropriate ATM hardware address? The host cannot broadcast a request to all
computers in the LIS because ATM does not offer hardware broadcast. Instead, it con-
tacts a server to obtain the mapping. Communication between the host and server uses
ATMARP, a variant of the ARP protocol described in Chapter 5.

As with conventional ARP, a sender forms a request that includes the sender’s IP
and ATM hardware addresses as well as the IP address of a target for which the ATM
hardware address is needed. The sender then transmits the request to the ATMARP
server for the logical subnet. If the server knows the ATM hardware address, it sends
an ATMARP reply. Otherwise, the server sends a negative ATMARP reply.

18.17 ATMARP Packet Format

Figure 18.10 illustrates the format of an ATMARP packet. As the figure shows,
ATMARP modifies the ARP packet format slightly. The major change involves addi-
tional address length fields to accommodate ATM addresses. To appreciate the
changes, one must understand that multiple address forms have been proposed for
ATM, and that no single form appears to be the emerging standard. Telephone com-
panies that offer public ATM networks use an 8-octet format where each address is an
ISDN telephone number defined by ITU standard document E.164. By contrast, the
ATM Forumt allows each computer attached to a private ATM network to be assigned
a 20-octet Network Service Access Point (NSAP) address. Thus, a two-level hierarchical
address may be needed that specifies an E.164 address for a remote site and an NSAP
address of a host on a local switch at the site.

To accommodate multiple address formats and a two-level hierarchy, an ATMARP
packet contains two length fields for each ATM address as well as a length field for
each protocol address. As Figure 18.10 shows, an ATMARP packet begins with fixed-
size fields that specify address lengths. The first two fields follow the same format as
conventional ARP. The field labeled HARDWARE TYPE contains the hexadecimal

+The ATM Forum is a consortium of industrial members that recommends standards for private ATM
networks.

Sec. 18.17 ATMARP Packet Format 367

value 0x0013 for ATM, and the field labeled PROTOCOL TYPE contains the hexade-
cimal value 0x0800 for IP.

Because the address format of the sender and target can differ, each ATM address
requires a length field. Field SEND HLEN specifies the length of the sender’s ATM ad-
dress, and field SEND HLEN?2 specifies the length of the sender’s ATM subaddress.
Fields TAR HLEN and TAR HLEN?2 specify the lengths of the target’s ATM address and
subaddress. Finally, fields SEND PLEN and TAR PLEN specify the lengths of the
sender’s and target’s protocol addresses.

Following the length fields in the header, an ATMARP packet contains six ad-
dresses. The first three address fields contain the sender’s ATM address, ATM subad-
dress, and protocol address. The last three fields contain the target’s ATM address,
ATM subaddress, and protocol address. In the example in Figure 18.10, both the sender
and target subaddress length fields contain zero, and the packet does not contain octets
for subaddresses.

0 8 16 24 31
HARDWARE TYPE (0x0013) PROTOCOL TYPE (0x0800)

SEND HLEN (20) | SEND HLEN2 (0) OPERATION
SEND PLEN (4) | TAR HLEN (20) | TAR HLEN2 (0) | TAR PLEN (4)
SENDER’S ATM ADDRESS (octets 0-3)
SENDER’S ATM ADDRESS (octets 4-7)
SENDER’S ATM ADDRESS (octets 8-11)
SENDER’S ATM ADDRESS (octets 12-15)
SENDER’S ATM ADDRESS (octets 16-19)
SENDER’S PROTOCOL ADDRESS
TARGET’S ATM ADDRESS (octets 0-3)
TARGET’S ATM ADDRESS (octets 4-7)
TARGET’S ATM ADDRESS (octets 8-11)
TARGET’S ATM ADDRESS (octets 12-15)
TARGET’S ATM ADDRESS (octets 16-19)
TARGET’S PROTOCOL ADDRESS

Figure 18.10 The format of an ATMARP packet when used with 20-octet
ATM addresses such as those recommended by the ATM
Forum.

368 TCP/IP Over ATM Networks Chap. 18
18.17.1 Format Of ATM Address Length Fields

Because ATMARP is designed for use with either E.164 addresses or 20-octet
NSAP addresses, fields that contain an ATM address length include a bit that specifies
the address format. Figure 18.11 illustrates how ATMARP encodes the address type
and length in an 8-bit field.

0 1 2 3 4 5 6 7

T T T T T

0 |TYPE LENGTi1 OF ADDRESS IN OCTETS
1 1 1 I 1

Figure 18.11 The encoding of ATM address type and length in an 8-bit field.
Bit / distinguishes the two types of ATM addresses.

A single bit encodes the type of an ATM address because only two forms are
available. If bit / contains zero, the address is in the NSAP format recommended by
the ATM Forum. If bit / contains one, the address is in the E.164 format recommended
by the ITU. Because each ATM address length field in an ATMARP acket has the
form shown in Figure 18.11, a single packet can contain multiple types of ATM ad-
dresses.

18.17.2 Operation Codes Used With The ATMARP Protocol

The packet format shown in Figure 18.10 is used to request an address binding, re-
ply to a request, or request an inverse address binding. When a computer sends an AT-
MARP packet, it must set the OPERATION field to specify the type of binding. The
table in Figure 18.12 shows the values that can be used in the OPERATION field, and
gives the meaning of each. The remainder of this section explains how the protocol
works.

Code Meaning

1 ATMARP Request -
2 ATMARP Reply

8 Inverse ATMARP Request
9 Inverse ATMARP Reply
10 ATMARP Negative Ack

Figure 18.12 The values that can appear in the OPERATION field of an AT-
MARP packet and their meanings. When possible, values have
been choscn to agree with the operation codes used in conven-
tional ARP.

Sec. 18.18 Using ATMARP Packets To Determine An Address 369
18.18 Using ATMARP Packets To Determine An Address

Performing address binding for connection-oriented hardware is slightly more com-
plex than for connectionless hardware. Because ATM hardware supports two types of
virtual circuits, two cases arise. First, we will consider the case of permanent virtual
circuits. Second, we will consider the case ot switched virtual circuits.

18.18.1 Permanent Virtual Circuits

To understand the problems PVCs introduce, recall how ATM hardware operates.
A network administrator must configure each PVC; hosts themselves do not participate
in PVC setup. In particular, a host begins operation with PVCs in place, and does not
receive any information from the hardware about the address of the remote endpoint.
Thus, unless address information has been configured into the hosts (e.g., stored on
disk), the host does not know the IP address or ATM address of the computer to which
a PVC connects.

The Inverse ATMARP protocol (InATMARP) solves the problem of finding ad-
dresses when using PVCs. To use the protocol, a computer must know each of the per-
manent virtual circuits that have been configured. To determine the IP and ATM ad-
dresses of the remote endpoint, a computer sends an Inverse ATMARP request packet
with the OPERATION field set to 8. Whenever such a request arrives over a PVC. the
receiver ‘generates an Inverse ATMARP reply with the OPERATION field set to 9.
Both the request and the reply contain the sender’s IP address and ATM address. Thus,
a computer at each end of the connection learns the binding for the computer at the oth-
erend. In summary,

Two computers that communicate over a permanent virtual circuit use
Inverse ATMARP to discover each others’ IP and ATM addresses.
One computer sends an Inverse ATMARP request, 1o which the other
sends a reply.

18.18.2 Switched Virtual Circuits

Within an LIS, computers create switched virtual circuits on demand. When com-
puter A needs to send a datagram to computer B and no circuit currently exists to B, A
uses ATM signaling to create the necessary circuit. Thus, A begins with B’s IP address,
which must be mapped to an equivalent ATM address. We said that each LIS has an
ATMARRP server, and all computers in an LIS must be configured so they know how to
reach the server (e.g., a computer can have a PVC to the server or can have the server’s
ATM address stored on disk). A server does not form connections to other computers;
the server merely waits for computers in the LIS to contact it. To map address B to an
ATM address, computer A must have a virtual circuit open to the ATMARP server for
the LIS. Computer A forms an ATMARP request packet and sends it over the connec-

370 TCP/IP Over ATM Networks Chap. 18

tion to the server. The OPERATION field in the packet contains /, and the target’s pro-
tocol address field contains B’s IP address.

An ATMARP server maintains a database of mappings from IP addresses to ATM
addresses. If the server knows B’s ATM address, the ATMARP protocol operates simi-
lar to proxy ARP. The server forms an ATMARP reply by setting the OPERATION
code to 2 and filling in the ATM address that corresponds to the target IP address. As
in conventional ARP, the server exchanges sender and target entries before returning the
reply to the computer that sent the request.

If the server does not know the ATM address that corresponds to the target IP ad-
dress in a request, ATMARP’s behavior differs from conventional ARP. Instead of ig-
noring the request, the server returns a negative acknowledgement (an ATMARP packet
with an OPERATION field of 10). A negative acknowledgement distinguishes between
addresses for which a server does not have a binding and a malfunctioning server.
Thus, when a host sends a request to an ATMARP server, it determines one of three
outcomes unambiguously. The host can learn the ATM address of the target, that the
target is not currently available in the LIS, or that the server is not currently responding.

18.19 Obtaining Entries For A Server Database

An ATMARP server builds and maintains its database of bindings automatically.
To do so. it uses Inverse ATMARP. Whenever a host or router first opens a virtual cir-
cuit to an ATMARP server, the server immediately sends an Inverse ATMARP request
packet?. The host or router must answer by sending an Inverse ATMARP reply packet.
When it receives an Inverse ATMARP reply. the server extracts the sender’s IP and
ATM addresses, and stores the binding in its database. Thus, each computer in an LIS
must establish a connection to the ATMARP server, even if the computer does not in-
tend to look up bindings.

Euch host or router in an LIS must register its IP address and
corresponding ATM address with the ATMARP server for the LIS.
Registration occurs automatically whenever a computer establishes a
virtual circuit 1o an ATMARP server because the server sends an In-
verse ATMARP 1o which the computer must respond.

18.20 Timing Out ATMARP Information In A Server

Like the bindings in a conventional ARP cache, bindings obtained via ATMARP
must be timed out and removed. How long should an entry persist in a server? Once a
computer registers its binding with an ATMARP server, the server keeps the entry for a
minimum of 20 minutes. After 20 minutes, the server examines the entry. If no circuit
exists to the computer that sent the entry, the server deletes the entry}. If the computer
that sent the entry has maintained an open virtual circuit, the server attempts to revali-

+The circuit must use AALS with LLC/SNAP type identification.
A server does not automatically delete an entry when a circuit is closed; it waits for the timeout period.

Sec. 18.20 Timing Out ATMARP Information In A Server 371

date the entry. The server sends an Inverse ATMARP request and awaits a response. If
the response verifies information in the entry, the server resets the timer and waits
another 20 minutes. If the Inverse ATMARP response does not match the information
in the entry, the server closes the circuit and deletes the entry.

To help reduce traffic. the ATMARP standard permits an optimization. It allows a
host to use a single virtual circuit for all communication with an ATMARP server.
When the host sends an ATMARP request, the request contains the host’s binding in
the SENDER’s field. The server can extract the binding and use it to revalidate its
stored information. Thus, if a host sends more than one ATMARP request every 20
minutes, the server will not need to send the host an Inverse ATMARP request.

18.21 Timing Out ATMARP Information In A Host Or Router

A host or router must also use timers to invalidate information obtained from an
ATMARP server. In particular, the standard specifies that a computer can keep a bind-
ing obtained from the ATMARP server for at most 15 minutes. When 15 minutes ex-
pire. the entry must be removed or revalidated. If an address binding expires and the
host does not have an open virtual circuit to the destination, the host removes the entry
from its ARP cache. If a host has an openr virtual circuit to the destination. the host at-
tempts to revalidate the address binding. Expiration of an address binding can delay
traffic because:

A host or router must stop sending data to any destination for which
the address binding has expired until the binding can be revalidated.

The method a host uses to revalidate a binding depends on the type of virtual cir-
cuit being used. If the host can reach the destination over a PVC, the host sends an In-
verse ATMARP request on the circuit and awaits a reply= If the host has an SVC open
to the destination, the host sends an ATMARP request to;the ATMARP server.

18.22 IP Switching Technologies

So far, we have described ATM as a connection-oriented network technology that
IP uses to transfer datagrams. However, engineers have also investigated a more funda-
mental union of the two technologies. They began with the question: ‘‘can switching
hardware be exploited to forward IP traffic at higher speeds?’’ The assumption under-
lying the effort is that hardware will be able to switch more packets per second than to
route them. If the assumption is correct, the question makes sense because router ven-
dors are constantly trying to find ways to increase router performance and scale.

Ipsilon Corporation was one of the first companies to produce products that com-
bined IP and hardware switches; they used ATM, called their technology IP switching,
and called the devices they produced IP swirches. Since Ipsilon, other companies have

372 TCP/IP Over ATM Networks Chap. 18

produced a series of designs and names, including tag switching, layer 3 switching, and
label switching. Several of the ideas have been folded into a standard endorsed by the
IETF that is known as Multi-Protocol Label Switching (MPLS)t. Contributors to the
open standard hope that it will allow products from multiple vendors to interoperate.

18.23 Switch Operation

How do IP switching technologies work? There are two general answers. Early
technologies all assumed the presence of a conventional NBMA network (usually
ATM). The goal was to optimize IP routing to send datagrams across the ATM fabric
instead of other networks whenever possible. [n addition to proposing ways to optimize
routes, later efforts also proposed modifying the switching hardware to optimize it for
[P traffic. In particular, two optimizations have been proposed. First, if switching
hardware can be redesigned to either use large cells or to allow variable-length frames,
header overhead will be reducedi. Second, if hardware can be built to parse IP headers
and extract needed fields, an incoming datagram can be forwarded faster.

Forwarding is at the heart of all label switching. There are three aspects. First, at
the IP layer, a forwarding device must function as a conventional IP router to transfer
datagrams between a local network and the switched fabric. Thus, the device must
learn about remote destinations, and must map an IP destination address into a next-hop
address. Second, at the network interface layer, a forwarding device must be able to
create and manage connections through the switched fabric (i.e., by mapping IP ad-
dresses to underlying hardware addresses and creating SVCs as needed). Third, a for-
warding device must optimize ‘paths through the switched fabric.

18.24 Optimized IP Forwarding

Optimized forwarding involves high-speed classification and shortcut paths. To
understand shortcut paths, imagine three switches, S,, S,, and §,, and suppose that to
reach a given destination the IP routing table in §, specifies forwarding to S,. which for-
wards to S,, which delivers to the destination. Further suppose that all three devices are
connected to the same fabric. If S, observes that many datagrams are being sent to the
destination, it can optimize routing by bypassing S, and setting up a shortcut path (i.e., a
virtual circuit) directly to S,. Of course, many details need to be handled. For example,
although our example involves only three devices, a real network may have many.
After it learns the path a datagram will travel to its destination, S, must find the last hop
along the path that is reachable through the switched network, translate the IP address
of that hop to an underlying hardware address, and form a connection. Recognizing
whether a given hop on the path connects to the same switching fabric and translating
addresses are not easy; complex protocols are needed to pass the necessary information.
To give IP the illusion that datagrams are following the routes specified by IP, either §,
or §, must agree to account for the bypassed router when decrementing the TTL field in

tDespite having **multi-protocol’” in the name. MPLS is focused almost exclusively on finding ways to
put IP over an NBMA switched hardware platform.
+In the industry. ATM header overhead is known as the cell rax.

Sec. 18.24 Optimized [P Forwarding 373

the datagram header. Furthermore, S, must continue to receive routing updates from S,
s0 it can revert to the old path in case routes change.

18.25 Classification, Flows, And Higher Layer Switching

A classification scheme examines each incoming datagram and chooses a connec-
tion over which the datagram should travel. Building a classification scheme in
hardware further enhances the technology by allowing a switch to make the selection at
high speed. Most of the proposed classification schemes use a two-level hierarchy.
First. the switch classifies a datagram into one of many possible flows. and then the
flow is mapped onto a given connection. One can think of the mapping mathematically
as a pair of functions:

f=c,(datagram)
and

ve = ¢, (f)

where f identifies a particular flow. and vc identifies a connection. We will see below
that separating the two functions provides flexibility in the possible mappings.

In practice function ¢, does not examine the entire datagram. Instead. only header
fields are used. Strict laver 3 classification restricts computation to fields in the TP
header such as the source and destination 1P addresses and type of service. Most ven-
dors implemen. laver 4 clussificationt. and some ofter laver 5 classification. In addi-
tion to examining fields in the IP header; layer 4 classification schemes also examine
protocol port numbers in the TCP or UDP header. Layer 5 schemes look further into
the datagram and consider the application.

The concept of flows is important in switching IP because it allows the switch to
track activity. For example, imagine that as it processes datagrams, a switch makes a
list of (source, destination) pairs and keeps a counter with each. It does not make sense
for a switch to optimize all routes because some flows only contain a few packets (e.g.,
when someone pings a remote computer). The count of flow activity provides a meas-
ure — when the count reaches a threshold. the switch begins to look for an optimized
route. Layer 4 classification helps optimize flows because it allows the switch to know
the approximate duration of a connection and whether traffic is caused by multipte TCP
connections or a single connection.

Flows are also an important tool to make switched schemes work well with TCP.
If a switch begins using a shortcut on a path that TCP is using, the round-trip time
changes and some segments arrive out of order. causing TCP to adjust its retransmission
timer. Thus. a switch using layer 4 classification can map each TCP session to a dif-
ferent flow. and then choose whether to map a flow to the original path or the shortcut.
Most switching technologies employ hysteresis by retaining the original path for exist-
ing TCP connections, but using a shortcut for new connections (i.e., moving existing

“Vendors use the term laver 4 switching 1o characterize products that implement layer 4 classification.

374 TCP/IP Over ATM Networks Chap. 18

connections to the shortcut after a fixed amount of time has elapsed or if the connection
is idle).

18.26 Applicability Of Switching Technology

Although many vendors are pushing products that incorporate switched IP, there
are several reasons why the technology has not had more widespread acceptance. First,
in many cases switching costs more than conventional routing, but does not offer much
increase in performance. The difference is most significant in the local area environ-
ment where inexpensive LANSs, like Ethernet, have sufficient capacity and inexpensive
routers work. In fact, computer scientists continue to find ways to improve IP forward-
ing schemes, which means that traditional routers can process more datagrams per
second without requiring an increase in hardware speed. Second, the availability of
inexpensive higher-speed LANSs, such as gigabit Ethernet, has made organizations
unwilling to use more expensive connection-oriented technology for an entire organiza-
tion. Third, although switching IP appears straightforward, the details make it complex.
Consequently, the protocols are significantly more complex than other parts of IP,
which makes them more difficult to build, install, configure, and manage. We conclude
that although there may be advantages to switched IP, it will not replace all traditional
routers.

18.27 Summary

IP can be used over connection-oriented technologies; we examined ATM as a
specific example. ATM is a high-speed network technology in which a network con-
sists of one or more switches interconnected to form a switching fabric. The resulting
system is characterized as a Non-Broadcast Multiple-Access technology because it ap-
pears to operate as a single, large network that provides communication between any
two attached computers, but does not allow a single packet to be broadcast to all of
them.

Because ATM is connection-oriented, two computers must establish a virtual cir-
cuit through the network before they can transfer data; a host can choose between a
switched or permanent type of virtual circuit. Switched circuits are created on demand,;
permanent circuits require manual configuration. In either case, ATM assigns each
open circuit an integer identifier. Each frame a host sends and each frame the network
delivers contains a circuit identifier; a frame does not contain a source or destination ad-
dress.

Although the lowest levels of ATM use 53-octet cells to transfer information, IP
always uses ATM Adaptation Layer 5 (AAL5). AALS accepts and delivers variable-
size blocks of data, where each block can be up to 64K octets. To send an IP datagram
across ATM, the sender must form a virtual circuit connection to the destination, speci-
fy using AALS on the circuit, and pass each datagram to AALS5 as a single block of

Sec. 18.27 Summary 375

data. AALS adds a trailer, divides the datagram and trailer into cells for transmission
across the network, and then reassembles the datagram before passing it to the operating
system on the destination computer. IP uses a default MTU of 9180, and AALS per-
forms the segmentation into cells.

A Logical IP Subnet (LIS) consists of a set of computers that use ATM in place of
a LAN; the computers form virtual circuits among themselves over which they ex-
change datagrams. Because ATM does not support broadcasting, computers in an LIS
use a modified form of ARP known as ATMARP. An ATMARP server performs all
address binding; each computer in the LIS must register with the server by supplying its
IP address and ATM address. As with conventional ARP, a binding obtained from AT-
MARP is aged. After the aging period, the binding must be revalidated or discarded. A
related protocol, Inverse ATMARP, is used to discover the ATM and IP addresses of a
remote computer connected by a permanent virtual circuit.

Switching hardware technology can be used with IP. An IP switch acts as a router,
but also classifies IP datagrams and sends them across the switched network when pos-
sible. Layer 3 classification uses only the datagram header; layer 4 classification also
examines the TCP or UDP header. MPLS is a new standard for switching IP that is
designed to allow systems from multiple vendors to interoperate.

FOR FURTHER STUDY

Newman et. al. [April 1998] describes IP switching. Laubach and Halpern [RFC
2225] introduccs *he concept of Logical IP Subnet, defines the ATMARP protocol. and
specifies the default MTU. Grossman and Heinanen [RFC 2684] describes the use of
LLC/SNAP headers when encapsulating IP in AALS.

Partridge [1994] describes gigabit networking in general, and the importance of
cell switching in particular. De Prycker [1993] considers many of the theoretical under-
pinnings of ATM and discusses its relationship to telephone networks.

EXERCISES

18.1 If your organization has an ATM switch or ATM service, find the technical and econom-
ic specifications, and then compare the cost of using ATM with the cost of another tech-
nology such as Ethernet.

18.2 A typical connection between a host and a private ATM switch operates at 155 Mbps.
Consider the speed of the bus on your favorite computer. What percentage of the bus is
required to keep an ATM interface busy?

18.3 Many operating systems choose TCP buffer sizes to be multiples of 8K octets. If IP
fragments datagrams for an MTU of 9180 octets, what size fragments result from a da-
tagram that carries a TCP segment of 16K octets? of 24K octets?

376

18.4

18.5

18.6

18.7

18.8

18.9

18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

TCP/IP Over ATM Networks Chap. 18

Look at the definition of IPv6 described in Chapter 33. What new mechanism relates
directly to ATM?

ATM is a best-effort delivery system in which the hardware can discard cells if the net-
work becomes congested. What is the probability of datagram loss if the probability of
loss of a single cell is /P and the datagram is 576 octets long? 1500 octets? 4500 oc-
tets”? 9180 octets?

A typical remote login session using TCP generates datagrams of 41 octets: 20 octets of
IP header. 20 octets of TCP header, and 1 octet of data. How many ATM cells are re-
quired to send such a datagram using the default IP encapsulation over AALS?

How many cells, octets, and bits can be present on a fiber that connects to an ATM
switch if the fiber is 3 meters long? 100 meters? 3000 meters? To find out. consider an
'ATM switch transmitting data at 155 Mbps. Each bit is a pulse of light that lasts
1/(155x 10 second. Assume the pulse travels at the speed of light, calculate its length,
and compare to the length of the fiber.

A host can specify a two-level ATM address when requesting an SVC. What ATM net-
work topologies are appropriate for a two-level addressing scheme? Characterize situa-
tions for which additional levels of hierarchy are useful.

An ATM nctwork guarantees to deliver cells in order. but may drop cells if it becomes
congested. Is it possible to modify TCP to take advantage of cell ordering to reduce pro-
tocol overhead? Why or why not?

Read about the LANE and MPOA standards that allow ATM to emulate an Ethernet or
other local area network. What is the chief advantage of using ATM to emulate LANs?
The chiel disadvantage?

A large organization that uses ATM to interconnect IP hosts must divide hosts into logi-
cal IP subnets. Two extremes exist: the organization can place all hosts in one large
LIS. or the organization can have many LIS (e.g., each pair of hosts forms an LIS). Ex-
plain why neither extreme is desirable.

How many ATM cells are required to transfer a single ATMARP packet when each
ATM address and subaddress is 20 octets and cach protocol address is 4 octets?

ATM allows a host to estabhsh multiple virtual circuits to a given destination. What is
the major advantage of doing so?

Measure the throughput and delay of an ATM switch when using TCP. If your operat-
ing system permits. repeat the experiment with the TCP transmit bufter set to various
sizes (if your system uses sockets, refer to the manual for details on how to set the
buffer size). Do the results surprise you?

IP docs not have a mechanism to associate datagrams traveling across an ATM network
with a specific ATM virtual circuit. Under what circumstances would such a mechanism
be useful?

A server does not immediately remove an entry from its cache when the host that sent
the information closes its connection to the server. What is the chief advantage of such
a design? What is the chief disadvantage?

Is IP switching worthwhile for applications you run? To find out. monitor the traffic
from your computer and find the average duration of TCP connections. the number of
simultancous connections, and the number of IP destinations you contact in a week.
Read about MPLS. Should MPLS accommodate layer 2 forwarding (i.c., bridging) as
well as optimized IP forwarding? Why or why not?

19

Mobile IP

19.1 Introduction

Previous chapters describe the original 1P addressing and routing schemes used
with stationary computers. This chapter considers a recent extension of IP designed to
allow portable computers to move from one network to another.

19.2 Mobility, Routing, and Addressing

In the broadest sense, the term mobile computing refers to a system that allows
computers to move from one location to another. Mobility is often associated with
wireless technologies that allow movement across long distances at high speed. How-
ever, speed is not the central issue for IP. ‘Instead, a challenge only arises when a host
changes from one network to another. For example, a notebook computer attached to a
wireless LAN can move around the range of the transmitter rapidly without affecting IP,
but simply unplugging a desktop computer and plugging it into a different network re-
quires reconfiguring IP.

The IP addressing scheme, which was designed and optimized for a stationary en-
vironment, makes mobility difficult. In particular, because a host's IP address includes
a network prefix, moving the host to a new network means either:

e The host's address must change.
e Routers must propagate a host-specific route across the entire internet.

Neither alternative works well. On one hand, changing an address is time-consuming.
usually requires rebooting the computer, and breaks all existing transport-layer connec-

377

378 Mobiie [P Chap. 19

tions. In addition, if the host contacts a server that uses addresses to authenticate, an
additional change to DNS may be required. On the other hand, a host-specific routing
approach cannot scale because it requires space in routing tables proportional to the
number of hosts, and because transmitting routes consumes excessive bandwidth.

19.3 Mobile IP Characteristics

The IETF devised a solution to the mobility problem that overcomes some of the
limitations of the original IP addressing scheme. Officially named IP mobility support,
it is popularly called mobile IP. The general characteristics include the following.

Transparency. Mobility is transparent to applications and transport layer protocols
as well as to routers not involved in the change. In particular, as long as they remain
idle, all open TCP connections survive a change in network and are ready for further
use.

Interoperabilitv with IPv4. A host using mobile IP can interoperate with stationary
hosts that run conventional IPv4 software as well as with other mobile hosts. Further-
more, no special addressing is required — the addresses assigned to mobile hosts do not
differ from addresses assigned to fixed hosts.

Scalability. The solution scales to large internets. In particular, it permits mobility
across the global Internet.

Security. Mobile IP provides security facilities that can be used to ensure all mes-
sages are authenticated (i.e., to prevent an arbitrary computer from impersonating a
mobile host).

Macro mobility. Rather than attempting to handle rapid network transitions such
as one encounters in a wireless cellular system, mobile IP focuses on the problem of
long-duration moves. For example, mobile IP works well for a user who takes a port-
able computer on a business trip, and leaves it attached to the new location for a week.

19.4 Overview Of Mobile IP Operation

The biggest challenge for mobility lies in allowing a host to retain its address
without requiring routers to learn host-specific routes. Mobile IP solves the problem by
allowing a single computer to hold two addresses simultaneously. The first address,
which can be thought of as the computer’s primary address, is permanent and fixed. It
is the address applications and transport protocols use. The second address, which can
be thought of as a secondary address, is temporary — it changes as the computer
moves, and is valid only while the computer visits a given location.

A mobile host obtains a primary address on its original, home network. After it
moves to a foreign network and obtains a secondary address, the mobile must send the
secondary address to an agent (usually a router) at home. The agent agrees to intercept
datagrams sent to the mobile’s primary address, and uses IP-in-IP encapsulation to tun-
nel each datagram to the secondary addresst.

+Chapter 17 illustrates IP-in-IP encapsulation.

Sec. 19.4 Overview Of Mobile IP Operation 379

If the mobile moves again, it obtains a new secondary address, and informs the
home agent of its new location. When the mobile returns home, it must contact the
home agent to deregister, meaning that the agent will stop intercepting datagrams.
Similarly, a mobile can choose to deregister at any time (e.g.. when leaving a remote lo-
cation).

We said that mobile IP is designed for macroscopic mobility rather than high-speed
movement. The reason should be clear: overhead. In particular, after it moves, a
mobile must detect that it has moved, communicate across the foreign network to obtain
a secondary address, and then communicate across the internet to its agent at home to
arrange forwarding. The point is:

Because it requires considerable overhead after each move, mobile IP
is intended for situations in which a host moves infrequently and
remains at a given location for a relatively long period of time.

19.5 Mobile Addressing Details

A mobile’s primary or home address is assigned and administered by the network
administrator of the mobile’s home network: there is no distinction between an address
assigned to a stationary computer and a home address assigned to a mobile computer.
Applications on a mobile computer always use the home address.

Whenever it connects to a network other than its home, a mobile must obtain a
temporary address. Known as a care of address, the temporary address is never known
or used by applications. Instead, only IP software on the mobile and agents on the
home or foreign networks use the temporary address. A care-of address is administered
like any other address on the foreign network, and a route to the care-of address is pro-
pagated using conventional routing protocols.

In practice, there are two types of care-of addresses; the type used by a mobile
visiting a given network is determined by the network’s administrator. The two types
differ in the method by which the address is obtained and in the entity responsible for
forwarding. The first form, which is known as a co-located care-of address, requires a
mobile computer to handle all forwarding itself. In essence, a mobile that uses a co-
located care-of address has software that uses two addresses simultaneously — applica-
tions use the home address, while lower layer software uses the care-of address to re-
ceive datagrams. The chief advantage of a co-located address lies in its ability to work
with existing internet infrastructure. Routers on the foreign network do not know
whether a computer is mobile; care-of addresses are allocated to mobile computers by
the same mechanisms used to allocate addresses to fixed computers (e.g., the DHCP
protocol discussed in Chapter 23). The chief disadvantage of the co-located form arises
from the extra software required — the mobile must contain facilities to obtain an ad-
dress and to communicate with the home agent.

380 Mobile [P Chap. 19

The second form, which is known as a foreign agent care-of address, requires an
active participant on the remote network. The active entity. also a router, is called a
foreign agent to distinguish it from the home agent on the mobile’s home network.
When using a foreign agent care-of address, a mobile must first discover the identity of
an agent, and then contact the agent to obtain a care-of address. Surprisingly, a foreign
agent does not need to assign the mobile a unique address. Instead, we will see that the
agent can supply one of its [P addresses, and agree to forward datagrams to the mobile.
Although assigning a unique address makes communication slightly easier, using an ex-
isting address means that visiting mobiles do not consume IP addresses.

19.6 Foreign Agent Discovery

Known as agent discovery, the process of finding a foreign agent uses the ICMP
router discovery mechanism. Recall from Chapter 9 that router discovery requires each
router to periodically send an ICMP router advertisement message, and allows a host to
send an ICMP router solicitation to prompt for an advertisementf. Agent discovery
piggybacks additional information on router discovery messages to allow a foreign
agent to advertise its presence or a mobile to solicit an advertisement. The additional
information appended to each message is known as a mobility agent extensiont. Mobil-
ity extensions do not use a separate ICMP message type. Instead, a mobile host
deduces that the extension is present when the datagram length specified in the IP
header is greater than the length of the ICMP router discovery message. Figure 19.1 il-
lustrates the extension format.

0 8 16 24 31
TYPE (16) I LENGTH SEQUENCE NUM
LIFETIME CODE RESERVED
CARE-OF ADDRESSES

Figure 19.1 The format of a Mobility Agent Advertisement Extension mes-
sage. This extension is appended to an ICMP router advertise-
ment.

Each message begins with a l-octet TYPE field followed by a l-octet LENGTH
field. The LENGTH field specifies the size of the extension message in octets, exclud-
ing the TYPE and LENGTH octets. The LIFETIME field specifies the maximum
amount of time in seconds that the agent is willing to accept registration requests, with
all Is indicating infinity. Field SEQUENCE NUM specifies a sequence number for the
message to allow a recipient to determine when a message is lost. Each bit in the
CODE field defines a specific feature of the agent as listed in Figure 19.2.

+A mobile that does not know an agent’s IP address can multicast to the all agents group (224.0.0.11).
+A mobility agent also appends a prefix extension to the message that specifies the IP prefix being used
on the network; a mobile uses the prefix extension to determine when it has moved to a new network.

Sec. 19.6 Foreign Agent Discovery 381

Bit Meaning

0 Registration with an agent is required; co-located
care-of addressing is not permitted

The agent is busy and is not accepting registrations

Agent functions as a home agent

Agent functions as a foreign agent

Agent uses minimal encapsulation

Agent uses GRE-style encapsulation+

Agent supports header compression when communicating
with mobile

7 Unused (must be zero)

O hHLWN =

Figure 19.2 Bits of the CODE field of a mobility agent advertisement.

19.7 Agent Registration

Before it can receive datagrams at a foreign location, a mobile host must register.
The registration procedure allows a host to:

e Register with an agent on the foreign network.

Register directly with its home agent to request forwarding.

Renew a registration that is due to expire.

Deregister after returning home.

If it obtains a co-located care-of address, a mobile performs all necessary registra-
tion directly: the mobile can use the address to communicate with its home agent and
register. If it obtains a care-of address from a foreign agent, however, a mobile cannot
use the address to communicate directly with its home agent. Instead, the mobile must
send registration requests to the foreign agent, which then contacts the mobile’s home
agent on its behalf. Similarly, the foreign agent must forward messages it receives that
are destined for the mobile host. '

19.8 Registration Message Format

All registration messages are sent via UDP. Agents listen to well-known port 434
requests may be sent from an arbitrary source port to destination port 434. An agent
reverses the source and destination points, so a reply is sent from source port 434 to the
port the requester used.

A registration message begins with a set of fixed-size fields followed by variable-
length extensions. Each request is required to contain a mobile-home authentication ex-
tension that allows the home agent to verify the mobile’s identity. Figure 19.3 illus-
trates the message format.

+GRE. which stands for Generic Routing Encapsulation, refers to a generalized encapsulation scheme that
allows an arbitrary protocol to be encapsulated: IP-in-IP is one particular case.

382 Mobile IP Chap. 19

0 8 16 31
TYPE(1or3) | FLAGS | LIFETIME
HOME ADDRESS
HOME AGENT
CARE-OF ADDRESS

IDENTIFICATION

EXTENSIONS . . .

Figure 19.3 The format of a mobile IP registration message.

The TYPE field specifies whether the message is a registration request (/) or a
registration reply (3). The LIFETIME field specifies the number of seconds the regis-
tration is valid (a zero requests immediate deregistration, and all 1s specifies an infinite
lifetime). The HOME ADDRESS, HOME AGENT, and CARE-OF ADDRESS fields
specify the two IP addresses of the mobile and the address of its home agent, and the
IDENTIFICATION field contains a 64-bit number generated by the mobile that is used
to match requests with incoming replies and: to prevent the mobile from accepting old
messages. Bits of the FLAGS field are used to specify forwarding details as listed in
Figure 19.4.

Bit Meaning

0 This is a simultaneous (additional) address
rather than a replacement.

1 Mobile requests home agent to tunnel a copy of
each broadcast datagram

2 Mobile is using a co-located care-of address and
will decapsulate datagrams itself

3 Mobile requests agent to use minimal encapsulation

4 Mobile requests agent to use GRE encapsulation

5 Mobile requests header compression

6-7 Reserved (must be zero)

Figure 19.4 The meaning of FLAGS bits in a mobile registration request.

If it has a co-located care-of address, a mobile can send a registration request
directly to its home agent. Otherwise, the mobile sends the request to a foreign agent,
which then forwards the request to the home agent. In the latter case, both the foreign
and home agents process the request, and both must approve. For example, either the
home or foreign agents can limit the registration lifetime.

Sec. 19.9 Communication With A Foreign Agent : 383
19.9 Communication With A Foreign Agent

We said that a foreign agent can assign one of its IP addresses for use as a care-of
address. Doing so causes a problem because it means a mobile will not have a unique
address on the foreign network. The question then becomes: how can a foreign agent
and a mobile host communicate over a network if the mobile does not have a valid IP
address on the network? Communication requires relaxing the rules for IP addressing
and using an alternative scheme for address binding. In particular, when a mobile host
sends to a foreign agent, the mobile is allowed to use its home address as an IP source
address. Furthermore, when a foreign agent sends a datagram to a mobile, the agent is
allowed to use the mobile’s home address as an [P destination address.

Although the mobile’s home address can be used. an agent is not allowed to ARP
for the address (i.e., ARP is still restricted to IP addresses that are valid on the net-
work). To perform address binding without ARP. an agent is required to record all in-
formation about a mobile when a registration request arrives and to keep the informa-
tion during communication. In particular, an agent must record the mobile’s hardware
address. When it sends a datagram to the mobile, the agent consults its stored informa-
tion to determine the appropriate hardware address. Thus, although ARP is not used,
the agent can send datagrams to a mobile via hardware unicast. We can summarize:

If a mobile does not have a unique foreign address. a foreign agent
must use the mobile's home address for communication. Instead of
relying on ARP for address binding. the agent recoids the mobile’s
hardware address when a request arrives and uses the recorded infor-
mation to supply the necessary binding.

19.10 Datagram Transmission And Reception

Once it has registered, a mobile host on a foreign network can communicate with
an arbitrary computer. To do so, the mobile creates a datagram that has the computer’s
address in the destination field and the mobile's home address in the source field+. The
datagram follows the shortest path from the foreign network to the destination. Howev-
er, a reply will not follow the shortest path directly to the mobile. Instead. the reply
will travel to the mobile’s home network. The home agent, which has learned the
mobile’s location from the registration, intercepts the datagram and uses /P-in-1P encap-
sulation to tunnel the datagram to the care-of address. If a mobile has a co-located
care-of address. the encapsulated datagram passes directly to the mobile, which dis-
careds the outer datagram and then processes the inner datagram. If a mobile is using a
foreign agent for communication. the care-of address on the outer datagram specifies the
foreign agent. When it receives a datagram from a home agent, a foreign agent decap-
sulates the datagram, consults its table of registered mobiles, and transmits the datagram
across the local network to the appropriate mobile. To summarize:

+The foreign network and the ISP that connects it to the rest of the internet must agree o transmit da-
tagrams with an arbitrary source address.

384 Mobile IP Chap. 19

Because a mobile uses its home address as a source address when
communicating with an arbitrary destination, each reply is forwarded
to the mobile’s home network, where an agent intercepts the da-
tagram, encapsulates it in another datagram. and forwards it either
directly to the mobile or to the foreign agent the mobile is using.

19.11 The Two-Crossing Problem

The description above highlights the major disadvantage of mobile IP: inefficient
routing. Because a mobile uses its home address. a datagram sent to the mobile will be
forwarded to the mobile’s home network first and then to the mobile. The problem is
especially severe because computer communication often exhibits spatial locality of
reference, which means that a mobile visiting a toreign network will tend to communi-
cate with computers on that network. To understand why mobile [P handles spatial lo-
cality poorly, consider Figure 19.5.

Home Site Foreign Site
R, INTERNET %]
R lestination ¥ Rj
I:' N home agent o ‘ ‘(. v [‘
foreign agent -

- mobile’s original home ‘JM_] - mobile

Figure 19.5 A topology in which mobile [P routing is inetficient. When
mobile M communicates with local destination D. datagrams
from D travel across the internet to the mobile’s home agent and
then back to the mobile.

In the figure, mobile M has moved from it’s original home to a foreign network.
We assume the mobile has registered with its home agent, router R,, and the home
agent has agreed to forward datagrams. Now consider communication between the
mobile and destination D, which is located at the same site as the mobile. Datagrams
from M to D travel through router R, and are then delivered to D. However, because
datagrams sent from D to M contain M's home address, they follow a path through R,
and across the internet to the mobile’s home network. When the datagrams reach R,
(the mobile’s home agent), they are tunneled back across the internet to the foreign site
(either directly to M or to a foreign agent). Because crossing an internet is much more
expensive than local delivery, the situation described above is known as the nvo-
crossing problem, and is sometimes called the 2X problemt.

+If destination D 1s not close to the mobile. a slightly less severe version of the problem occurs which is
known as triangle forwarding or dog-leg forwarding.

Sec. 19.11 The Two-Crossing Problem) 385

Mobile IP does not guarantee to solve the 2X problem. However, some route op-
timization is possible. In particular, if a site expects a visiting mobile to interact heavi-
ly with local computers, the site can arrange to propagate a host-specific route for the
mobile. To ensure correct routing, the host-specific route must be deleted when the
mobile leaves. Of course. the problem remains whenever a mobile communicates with
a destination outside tiie region where the host-specific route has been propagated. For
example, suppose mobiles move frequently between two corporations in cities A and B.
The network managers at the two sites can agree to propagate host-specific routes for all
visiting mobiles, meaning that when a mobile communicates with other computers at
the foreign site, traffic stays local to the site. However, because host-specific routes are
limited to the two corporate sites, communication between the mobile and any other
destination in the foreign city will result in replies being forwarded through the
mobile’s home agent. Thus, the 2X problem remains for any destination outside the
corporation.

We can summarize:

Mobile IP introduces a routing inefficiency known as the 2X problem
that occurs when a mobile visits a foreign network far from its home
and then communicates with a computer near the foreign site. Each
datagram sent to the mobile travels across the internet to the mobile’s
home agent which then forwards the datagram back to the foreign
site. Eliminating the problem requires propagating host-specific
routes; the problem remains for any destination that does not receive
the host-specific route.

19.12 Communication With Computers On the Home Network

We said that when a mobile is visiting a foreign network. the mobile’s home agent
must intercept all datagrams sent to the mobile. Normally, the home agent is the router
that connects the mobile's home network to the rest of the internet. Thus, all datagrams
that arrive for the host pass through the home agent. Before forwarding a datagram, the
home agent examines its table of mobile hosts to determine whether the destination host
is currently at home or visiting a foreign network.

Although a home agent can easily intercept all datagrams that arrive for a mobile
host from outside. there is one additional case that the agent must handle: datagrams
that originate locally. In particular, consider what happens when a host on the mobile’s
home network sends a datagram to a mobile. Because IP specifies direct delivery over
the local network, the sender will not forward the datagram to a router. Instead, the
sender will ARP for the mobile’s hardware address, encapsulate the datagram, and
transmit it.

If a mobile has moved to a foreign network. the home agent must intercept all da-
tagrams, including those sent by local hosts. To guarantee that it can intercept da-
tagrams from local hosts. the home agent uses proxy ARP. That is, a home agent must

386 Mobile 1P Chap. 19

listen for ARP requests that specify the mobile as a target, and must answer the requests
by supplying its own hardware address. Proxy ARP is completely transparent to local
computers — any local system that ARPs for a mobile’s address will receive a reply,
and will forward the datagram as usual.

The use of proxy ARP also solves the problem of multiple connections. If a
mobile’s home network has multiple routers that connect to various parts of the internet,
only one needs to function as a home agent for the mobile. The other routers remain
unaware of mobility; they use ARP to resolve addresses as usual. Thus, because the
home agent answers the ARP requests, other routers forward datagrams without distin-
guishing between mobile and nonmobile hosts.

19.13 Summary

Mobile IP allows a computer to move from one network to another without chang-
ing its IP address and without requiring all routers to propagate a host-specific route.
When it moves from its original home network to a foreign network, a mobile computer
must obtain an additional, temporary address known as a care-of address. Applications
use the mobile’s original, home address: the care-of address is only used by underlying
network software to enable forwarding and delivery across the foreign network.

Once it detects that it has moved. a mobile either obtains a co-located care-of ad-
dress or discovers a foreign mobility agent and requests the agent to assign a care-of ad-
dress. After obtaining a care-of address, the mobile registers with its home agent (either
directly or indirectly through the foreign agent), and requests the agent to forward da-
tagrams.

Once registration is complete, a mobile can communicate with an arbitrary comput-
er on the internet. Datagrams sent by the mobile are forwarded directly to the specified
destination. However, each datagram sent back to the mobile follows a route to the
mobile’s home network where it is intercepted by the home agent, encapsulated in IP,
and then tunneled to the mobile.

FOR FURTHER STUDY

Perkins [RFC 2002} describes IP Mobility Support and defines the details of mes-
sages: an Internet draft describes version 2 [draft-ietf-mobileip-v2-00.txt]. Perkins
[RFC 2003], Perkins [RFC 2004]. and Hanks et. al. {RFC 1701] describe the details of
three IP-in-IP encapsulation schemes. Montenegro [RFC 2344 describes a reverse tun-.
neling scheme for mobile IP. Finally, Perkins and Johnson [draft-ietf-mobileip-optim-
07.txt] considers route optimization for mobile IP.

Exercises 387

EXERCISES

19.1 Compare the encapsulation schemes in RFCs 2003 and 2004. What are the advantages
and disadvantages of each?

19.2 Read the mobile IP specification carefully. How frequently must a router send a mobili-
ty agent advertisement? Why?

19.3 Consult the mobile IP specification. When a foreign agent forwards a registration re-
quest to a mobile’s home agent, which protocol ports are used? Why?

194 The specification for mobile IP allows a single router to function as both a home agent
for a network and a foreign agent that supports visitors on the network. What are the
advantages and disadvantages of using a single router for both functions?

19.5 The mobile IP specification defines three conceptually separate forms of authentication:
mobile to home agent, mobile to foreign agent, and foreign agent to home agent. What
are the advantages of separating them? The disadvantages?

19.6 Read the mobile IP specification to determine how a mobile host joins a multicast group.
How are multicast datagrams routed to the mobile? What is the optimal scheme?

20

Private Network
Interconnection (NAT, VPN)

20.1 Introduction

Previc. chapters describe an internet as a single-level abstraction that consists of
networks interconnected by routers. This chapter considers an alternative — a two-level
internet architecture in which each organization has a private internet and a central in-
ternet interconnects them.

The chapter examines technologies used with a two-level architecture. One solves
the pragmatic problem of limited address space, and the other offers increased func-
tionality in the form of privacy that prevents outsiders from viewing the data.

20.2 Private And Hybrid Networks

One of the major drawbacks of a single-level internet architecture is the lack of
privacy. If an organization comprises multiple sites, the contents of datagrams that
travel across the Internet between the sites can be viewed by outsiders because they pass
across networks owned by other organizations. A two-level architecture distinguishes
between internal and external datagrams (i.e., datagrams sent between two computers
within an organization and datagrams sent between a computer in the organization and a
computer in another organization). The goal is to keep internal datagrams private,
while still allowing external communication.

The easiest way to guarantee privacy among an organization’s computers consists
of building a completely isolated private internet, which is usually referred to as a

389

390 Private Network Interconnection (NAT, VPN) Chap. 20

private network. That is, an organization builds its own TCP/IP internet separate from
the globalInternet. A private network uses routers to interconnect networks at each
site, and leased digital circuits to interconnect the sites. All data remains private be-
cause no outsiders have access to any part of a private network. Furthermore, because
the private network is isolated from the global Internet, it can use arbitrary IP addresses.

Of course, complete isolation is not always desirable. Thus, many organizations
choose a hvbrid network architecture that combines the advantages of private network-
ing with the advantages of global Internet connectivity. That is, the organization uses
globally valid IP addresses and connects each site to the Internet. The advantage is that
hosts in the organization can access the global Internet when needed, but can be assured
of privacy when communicating internally. For example, consider the hybrid architec-
ture illustrated by Figure 20.1 in which an organization has a private network that inter-
connects two sites and each site has a connection to the Internet.

Site 1 (/\\ 3 Site 2
INTERNET
N !

128.10.1.0 192.5.48.0

leased circuit

128.10.2.0 128.210.0.0

Figure 20.1 An example of a hybrid network. In addition to a leased circuit
that interconnects the two sites, each has a connection to the glo-
bal Internet.

In the figure, a leased circuit between routers R, and R, provides privacy for inter-
site traffic. Thus, routing at each site is arranged to send traffic across the leased circuit
rather than across the global Internet.

20.3 A Virtual Private Network (VPN)

The chief disadvantage of either a completely private network or a hybrid scheme
arises from the high cost: each leased circuit (e.g., a T1 line) is expensive. Consequent-
ly, many organizations seek lower-cost alternatives. One way to reduce costs arises
from the use of alternative circuit technologies. For example, a common carrier may
change less for a Frame Relay or ATM PVC than for a T-series circuit that has
equivalent capacity. Another way to lower costs involves using fewer circuits.
Minimum circuit cost is achieved by eliminating all circuits and passing data across the
¢lobal Internet.

Sec. 20.3 A Virtual Private Network (VPN) 391

Using the global Internet as an interconnection among sites appears to eliminate
the privacy offered by a completely private network. The question becomes:

How can an organization that uses the global Internet to connect its
sites keep its data private?

The answer lies in a technology that allows an organization to configure a Virtual
Private Network (VPN)T. A VPN is private in the same way as a private network —
the technology guarantees that communication between any pair of computers in the
VPN remains concealed from outsiders. A VPN is virtual because it does not use
leased circuits to interconnect sites. Instead, a VPN uses the global Internet to pass
traffic from one site to another.

Two basic techniques make a VPN possible: runneling and encryption. We have
already encountered tunneling in Chapters 17 and 19. VPNs use the same basic idea —
they define a tunnel across the global Internet between a router at one site and a router
at another. and use IP-in-IP encapsulation to forward datagrams across the tunnel.

Despite using the same basic concept, a VPN tunnel differs dramatically from the
tunnels described previously. In particular. to guarantee privacy, a VPN encrypts each
outgoing datagram before encapsulating it in another datagram for transmissionf. Fig-
ure 20.2 illustrates the concept.

l ENCRYPTED INNER DATAGRAM

DATAGRAM

HEADER OUTER DATAGRAM DATA AREA

Figure 20.2 Iilustration of IP-in-IP encapsulation used with a VPN. To en-
sure privacy, the inner datagram is encrypted before being sent.

As the figure shows, the entire inner datagram, including the header, is encrypted
before being encapsulated. When a datagram arrives over a tunnel, the receiving router
decrypts the data area to reproduce the inner datagram. which it then forwards.
Although the outer datagram traverses arbitrary networks as it passes across the tunnel,
outsiders cannot decode the contents because they do not have the encryption key.
Furthermore, even the identity of the original source and destination are hidden becausc
the header of the inner datagram is encrypted as well. Thus, only addresses in the outer
datagram header are visible: the source address is the IP address of the router at one end
of a tunnel, and the destination address is the IP address of the router at the other end of
the tunnel.

+The name is a slight misnomer because the technology actually provides a virtual private internet.
$Chupter 32 considers IP security. and discusses the encapsulation used with IPsec.

392 Private Network Interconnection (NAT, VPN) Chap. 20

To summarize:

A Virtual Private Network sends data across the Internet, but encrypts
intersite transmissions to guarantee privacy.

20.4 VPN Addressing And Routing

The easiest way to understand VPN addressing and routing is to think of each VPN
tunnel as a replacement for a leased circuit in a private network. As in the private net-
work case, a router contains explicit routes for destinations within the organization.
However, instead of routing data across a leased lined, a VPN routes the data through a
tunnel. For example Figure 20.3 shows the VPN equivalent of the private network ar-
chitecture from Figure 20.1 along with a routing table for a router that handles tunnel-

ing.
Site 1 (/\ 3 Site 2
128.10.1.0 192.5.48.0
ﬂ destination next hop ﬂ
128.10.2.0 128.10.1.0 direct 128.210.0.0
128.10.2.0 R,
192.5.48.0 tunnel to R,
128.210.0.0 tunnel to R,
default ISP’s router

Routing table in R,

Figure 20.3 A VPN that spans two sites and R,’s routing table. The tunnel
from R, to R, is configured like a point-to-point leased circuit.

As an example of forwarding in a VPN, consider a datagram sent from a computer
on network /28.10.2.0 to a computer on network /28.270.0.0. The sending host for-
wards the datagram to R,, which forwards it to R,. According to the routing table in R,,
the datagram must be sent across the tunnel to R.. Therefore, R, encrypts the datagram,
encapsulates it in the data area of an outer datagram with destination R,. R, then for-
ward the outer datagram through the local ISP and across the Internet. The datagram
arrives at R,, which recognizes it as tunneled from R,. R, decrypts the data area to pro-

Sec. 20.4 VPN Addressing And Routing 393

duce the original datagram, looks up the destination in its routing table, and forwards
the datagram to R, for delivery.

20.5 A VPN With Private Addresses

A VPN offers an organization the same addressing options as a private network. If
hosts in the VPN do not need general Internet connectivity, the VPN can be configured
to use arbitrary IP addresses; if hosts need Internet access, a hybrid addressing scheme
can be used. A minor difference is that when private addressing is used, one globally
valid IP address is needed at each site for tunneling. Figure 20.4 illustrates the concept.

valid IP address valid 1P address

Site 1 Site 2
using subnet using subnet
10.1.0.0 A 10.2.0.0

10.1 address 10.2 address

Figure 20.4 Illustration of addressing for a VPN that interconnects two com-

pletely private sites over the global Internet. Computers at each
site use private addresses.

As the figure shows, site 1 uses subnet 10.1.0.0/16, while site 2 uses subnet
10.2.0.0/16. Only two globally valid addresses are needed. One is assigned to the con-
nection from router R, to the Internet, and the other is assigned to the connection from
R, to the Internet. Routing tables at the sites specify routes for private addresses; only
the VPN tunneling software needs to know about or use the globally valid IP addresses.

VPNs use the same addressing structure as a private network. Hosts in a complete-
ly isolated VPN can use arbitrary addresses, but a hybrid architecture with valid IP ad-
dresses must be employed to provide hosts with access to the global Internet. The ques-
tion remains: ‘‘How can a site provide access to the global Internet without assigning
each host a valid IP address?”’ There are two general solutions.

Known as an application gateway approach, the first solution offers hosts access to
Internet services without offering IP-level access. Each site has a multi-homed host
connected to both the global Internet (with a globally valid IP address) and the internal
network (using a private IP address). The multi-homed host runs a set of application
programs, known as application gateways, that each handle one service. Hosts at the
site do not send datagrams to the global Internet. Instead, they send each request to the
appropriate application gateway on the multihomed host, which accesses the service on
the Internet and then relays the information back across the internal network. For ex-
ample, Chapter 27 describes an e-mail gateway that can relay e-mail messages between
external hosts and internal hosts.

394 Private Network Interconnection (NAT, VPN) Chap. 20

The chief advantage of the application gateway approach lies in its ability to work
without changes to the underlying infrastructure or addressing. The chief disadvantage
arises from the lack of generality, which can be summarized:

Each application gateway handles only one specific service; multiple
gateways are required for multiple services.

Consequently, although they are useful in special circumstances, application gateways
do not solve the problem in a general way. Thus, a second solution was invented.

20.6 Network Address Translation (NAT)

A technology has been created that solves the general problem of providing IP-
level access between hosts at a site and the rest of the Internet, without requiring each
host at the site to have a globally valid IP address. Known as Network Address Trans-
lation (NAT), the technology requires a site to have a single connection to the global In-
ternet and at least one globally valid IP address, G. Address G is assigned to a comput-
er (a multi-homed host or a router) that connects the site to the Internet and runs NAT
software. Informally, we refer to a computer that runs NAT software as a NAT box; all
datagrams pass through the NAT box as they travel from the site out to the Internet or
from the Internet into the site.

NAT translates the addresses in both outgoing and incoming datagrams by replac-
ing the source address in each outgoing datagram with G and replacing the destination
address in each incoming datagram with the private address of the correct host. Thus,
from the view of an external host, all datagrams come from the NAT box and all
responses return to the NAT box. From the view of internal hosts, the NAT box ap-
pears to be a router that can reach the global Internet.

The chief advantage of NAT arises from its combifation of generality and tran-
sparency. NAT is more general than application gateways because it allows an arbitrary
internal host to access an arbitrary service on a computer in the global Internet. NAT is
transparent because it allows an internal host to send and receive datagrams using a
private (i.e., nonroutable) address.

To summarize:

Network Address Translation technology provides transparent IP-level
access to the Internet from a host with a private address.

Sec. 20.7 NAT Translation Table Creation 395
20.7 NAT Translation Table Creation

Our overview of NAT omits an important detail because it does not specify how
NAT knows which internal host should receive a datagram that arrives from the Inter-
net. In fact. NAT maintains a translation table that it uses to perform the mapping.
Each entry in the table specifies two items: the IP address of a host on the Internet and
the internal IP address of a host at the site. When an incoming datagram arrives from
the Internet, NAT looks up the datagram’s destination address in the translation table,
extracts the corresponding address of an internal host. replaces the datagram’s destina-
tion address with the host’s address, and forwards the datagram across the local network
to the hostt.

The NAT translation table must be in place before a datagram arrives from the In-
ternet. Otherwise, NAT has no way to identify the correct internal host to which the
datagram should be forwarded. How and when is the table initialized? There are
several possibilities:

e Manual initialization. A manager configures the translation table manually be-
fore any comrmunication occurs.

e Outgoing datagrams. The table is built as a side-effect of sending datagrams.
When it receives a datagram from an internal host, NAT creates an entry in the
translation table to record the address of the host and the address of the desti-
nation.

e Incoming name lookups. The table is built as a side-effect of handing domain
name lookups. When a host on the Internet looks up the domain name of an
internal host to find its IP addressi, the domain name software creates an entry
in the NAT translation table. and then answers the request by sending address
G. Thus, from outside the site, it appears that all host names at the site map to
address G.

Each initialization technique has advantages and disadvantages. Manual initializa-
tion provides permanent mappings and allows IP datagrams to be sent in either direction
at any time. Using an outgoing datagram to initialize the table has the advantage of be-
ing automatic, but does not allow communication to be initiated from the outside. Us-
ing incoming domain name lookups requires modifying domain name software. It ac-
commodates communication initiated from outside the site, but only works if the sender
performs a domain name lookup before sending datagrams.

Most implementations of NAT use outgoing datagrams to initialize the table; the
strategy is especially popular among ISPs. To understand why, consider a small ISP
that serves dialup customers. Figure 20.5 illustrates the architecture.

+Of course. whenever it replaces an address in a datagram header, NAT must recompute the header
checksum.
#Chapter 24 describes how the Domain Name Svstem (DNS) operates.

396 Private Network Interconnection (NAT. VPN) Chap. 20

ISP using NAT —//-D
e N

N"“/‘/ﬂ W\ hosts using
’\’\'\"V\D dialup access

N

Figure 20.5 The use of NAT by a small ISP that serves dialup customers.
NAT translation allows the ISP to assign a private address to
each dialup customer.

The ISP must assign an IP address to a customer whenever the customer dials in.
NAT permits the ISP to assign private addresses (e.g., the first customer is assigned
10.0.0.1, the second 10.0.0.2, and so on). When a customer sends a datagram to a desti-
nation on the Internet, NAT uses the outgoing datagram to initialize its translation table.

20.8 Multi-Address NAT

So far, we have described a simplistic implementation of NAT that performs a 1-
to-1 address mapping between an external address and an internal address. That is, a
1-to-1 mapping permits at most one computer at the site to access a given machine on
the global Internet at any time. In practice, more complex forms of NAT are used that
allow multiple hosts at a site to access a given external address concurrently.

One variation of NAT permits concurrency by retaining the 1-to-1 mapping, but al-
lowing the NAT box to hold multiple Internet addresses. Known as multi-address NAT,
the scheme assigns the NAT box a set of K globally valid addresses, G,, G,,... G,.
When the first internal host accesses a given destination, the NAT box chooses address
G,, adds an entry to the translation table, and sends the datagram. If another host ini-
tiates contact with the same destination, the NAT box chooses address G,, and so on.
Thus, multi-address NAT allows up to K internal hosts to access a given destination
concurrently.

20.9 Port-Mapped NAT

Another popular variant of NAT provides concurrency by translating TCP or UDP
protocol port numbers as well as addresses. Sometimes called Network Address Port
Translation (NAPT), the scheme expands the NAT translation table to include additional
fields. Besides a pair of source and destination IP addresses, the table contains a pair of
source and destination protocol port numbers and a protocol port number used by the
NAT box. Figure 20.6 illustrates the contents of the table.

Sec. 20.9 Port-Mapped NAT 397

Private Private External External NAT Protocol
Address Port Address Port Port Used
10.0.0.5 21023 128.10.19.20 80 14003 tep
10.0.0.1 386 128.10.19.20 80 14010 tcp
10.0.2.6 26600 207.200.75.200 21 14012 tep
10.0.0.3 1274 128.210.1.5 80 14007 tcp

Figure 20.6 An example of a translation table used by NAPT. The table in-
cludes port numbers as well as IP addresses.

The table in the figure has entries for four internal computers that are currently ac-
cessing destinations on the global Internet. All communication is using TCP. Interest-
ingly, the table shows two internal hosts, 10.0.0.5 and 10.0.0.1, both accessing protocol
port 80 (a Web server) on computer 128.10.19.20. In this case, it happens that the two
source ports being used for the two connections differ. However, source port unique-
ness cannot be guaranteed — it could turn out that two internal hosts happen to choose
the same source port number. Thus, to avoid potential conflicts, NAT assigns a unique
port number to each communication that is used on the Internet. Recall that TCP iden-
tifies each connection with a 4-tuple that represents the IP address and protocol port
number of each endpoint. The first two items in the table correspond to TCP connec-
tions that the two internal hosts identify with the 4-tuples:

(10.0.0.5, 23023, 128.10.19.20, 80)
(10.0.0.1, 386, 128.10.19.20, 80)

However, the computer in the Internet that receives datagrams after NAPT performs the
translation identifies the same two connections with the 4-tuples:

(G, 14003, 128.10.19.20, 80)
(G, 14010, 128.10.19.20, 80)

where G is the globally valid address of the NAT box.

The primary advantage of NAPT lies in the generality it achieves with a single glo-
bally valid IP address; the primary disadvantage arises because it restricts communica-
tion to TCP or UDP. As long as all communication uses TCP or UDP, NAPT allows
an internal computer to access multiple external computers, and multiple internal com-
puters to access the same external computer without interference. A port space of 16
bits allows up to 2/ pairs of applications to communicate at the same time. To sum-
marize:

Several variants of NAT exist, including the popular NAPT form that
translates protocol port numbers as well as IP addresses.

398 Private Network Interconnection (NAT, VPN) Chap. 20
20.10 Interaction Between NAT And ICMP

Even straightforward changes to an IP address can cause unexpected side-effects in
higher layer protocols. In particular, to maintain the illusion of transparency, NAT must
handle ICMP. For example, suppose an internal host uses ping to test reachability of a
destination on the Internet. The host expects to receive an ICMP echo reply for each
ICMP echo request message it sends. Thus, NAT must forward incoming echo replies
to the correct host. However, NAT does not forward all ICMP messages that arrive
from the Internet. If routes in the NAT box are incorrect, for example, an ICMP
redirect message must be processed locally. Thus, when an ICMP message arrives
from the Internet, NAT must first determine whether the message should be handled lo-
cally or sent to an internal host. Before forwarding to an internal host, NAT translates
the ICMP message.

To understand the need for ICMP translation, consider an ICMP destination un-
reachable message. The message contains the header from a datagram, D, that caused
the error. Unfortunately, NAT translated addresses before sending D, so the source ad-
dress is not the address the internal host used. Thus, before forwarding the message,
NAT must open the ICMP message and translate the addresses in D so they appear in
exactly the form that the internal host used. After making the change, NAT must
recompute the checksum in D, the checksum in the ICMP header, and the checksum in
the outer datagram header.

20.11 Interaction Between NAT And Applications

Although ICMP makes NAT complex, application protocols have a more serious
effect. In general, NAT will not work with any application that sends IP addresses or
protocol ports as data. For example, when two programs use the File Transfer Protocol
(FTP) described in Chapter 26, they have a TCP connection between them. As part of
the protocol, one program obtains a protocol port on the local machine, converts the
number to ASCII, and sends the result across a TCP connection to another program. If
the connection between the programs passes through NAPT from an internal host to a
host on the Internet, the port number in the data stream must be changed to agree with
the port number NAPT has selected instead of the port the internal host is using. In
fact, if NAT fails to open the data stream and change the number, the protocol will fail.
Implementations of NAT have been created that recognize popular protocols such as
FTP and make the necessary change in the data stream. However, there exist applica-
tions that cannot use NAT. To summarize:

NAT affects ICMP and higher layer protocols; except for a few stan-
dard applications like FTP, an application protocol that passes IP ad-
dresses or protocol port numbers as data will not operate correctly
across NAT.

Sec. 20.11 Interaction Between NAT And Applications 399

Changing items in a data stream increases the complexity of NAPT in two ways.
First, it means that NAPT must have detailed knowledge of each application that
transfers such information. Second, if the port numbers are represented in ASCII, as is
the case with FTP, changing the value can change the number of octets transferred. In-
serting even one additional octet into a TCP connection is difficult because each octet in
the stream has a sequence number. Because a sender does not know that additional data
has been inserted, it continues to assign sequence numbers without the additional data.
When it receives additional data, the receiver will generate acknowledgements that ac-
count for the data. Thus, after it inserts additional data, NAT must translate the se-
quence numbers in each outgoing segment and each incoming acknowledgement.

20.12 Conceptual Address Domains

We have described NAT as a technology that can be used to connect a private net-
work to the global Internet. In fact, NAT can be used to interconnect any two address
domains. Thus, NAT can be used between two corporations that each have a private
network using address 10.0.0.0. More important, NAT can be used at two levels:
between a customer’s private and an ISP’s private address domains as well as between
the ISP's address domain and the global Internet. Finally, NAT can be combined with
VPN technology to form a hybrid architecture in which private addresses are used
within the organization, and NAT is used to provide connectivity between each site and
the global Internet.

As an example of multiple levels of NAT, consider an individual who works at
home from several computers which are connected to a LAN. The individual can as-
sign private addresses to the computers at home, and use NAT between the home net-
work and the corporate intranet. The corporation can also assign private addresses and
use NAT between its intranet and the global Internet.

20.13 Slirp And Masquerade

Two implementations of Network Address Translation have become especially po-
pular; both were designed for the Unix operating system. The slirp program, derived
from 4.4 BSD. comes with program source code. It was designed for use in a dialup ar-
chitecture like the one shown in Figure 20.5. Slirp combines PPP and NAT into a sin-
gle program. It runs on a computer that has: a valid 1P address, a permanent Internet
connection, and one or more dialup modems. The chief advantage of slirp is that it can
use an ordinary user account on a Unix system for general-purpose Internet access. A
computer that has a private address dials in and runs slirp. Once slirp begins, the dialup
line switches from ASCII commands to PPP. The dialup computer starts PPP and ob-
tains access to the Internet (e.g., to access a Web site).

Slirp implements NAPT — it uses protocol port numbers to demultiplex connec-

400 Private Network Interconnection (NAT, VPN) Chap. 20

have multiple computers (e.g., computers on a LAN) accessing the Internet at the same
time through a single occurrence of slirp running on a UNIX system.

Another popular implementation of NAT has been designed for the Linux operat-
ing system. Known as masquerade, the program implements NAPT. Unlike slirp,
masquerade does not require computers to access it via dialup, nor does masquerade
need a user to login to the UNIX system before starting it. Instead, masquerade offers
many options; it can be configured to operate like a router between two networks, and it
handles most of the NAT variations discussed in this chapter, including the use of mui-
tiple IP addresses.

20.14 Summary

Although a private network guarantees privacy, the cost can be high. Virtual
Private Network (VPN) technology offers a lower cost alternative that allows an organi-
zation to use the global Internet to interconnect multiple sites and use encryption to
guarantee that intersite traffic remains private. Like a traditional private network, a
VPN can either be completely isolated (in which case hosts are assigned private ad-
dresses) or a hybrid architecture that allows hosts to communicate with destinations on
the global Internet.

Two technologies exist that provide communication between hosts in different ad-
dress domains: application gateways and Network Address Translation (NAT). An ap-
plication gateway acts like a proxy by receiving a request from a host in one domain,
sending the request to a destination in another, and then returning the result to the origi-
nal host. A separate application gateway must be installed for each service.

Network Address Translation provides transparent IP-level access to the global In-
ternet from a host that has a private address. NAT is especially popular among ISPs be-
cause it allows customers to access arbitrary Internet services while using a private IP
address. Applications that pass address or port information in the data stream will not
work with NAT until NAT has been programmed to recognize the application and make
the necessary changes in the data; most implementations of NAT only recognize a few
(standard) services.

FOR FURTHER STUDY

Many router and software vendors sell Virtual Private Network technologies, usu-
ally with a choice of encryption schemes and addressing architecture. Consult the ven-
dors’ literature for more information.

Several versions of NAT are also available commercially. The charter of the IETF
working group on NAT can be found at:

http://www.ietf.org/html.charters/nat-charter.html

For Further Study 401
In addition, Srisuresh and Holdrege [RFC 2663] defines NAT terminology, and the In-
ternet Draft repository at
hetp://www ietf.org/ID.html

contains several Internet Drafts on NAT.
More details about the masquerade program can be found in the Linux documenta-
tion. A resource page can be found at URL:

http://ipmasq.cjb.net

More information on slirp can be found in the program documentation; a resource
page for slirp can be found at:

http://blitzen.canberra.edu.au/slirp

EXERCISES

20.1 Under what circumstances will a VPN transfer substantially more packets than conven-
tional IP when sending the same data across the Internet? Hint: think about encapsula-
tion.

20.2 Read the slirp document to find out about port redirection. Why is it needed?

20.3 What are the potential problems when three address domains are connected by two NAT
boxes?

20.4 In the previous question, how many times will a destination address be translated? A
source address?

20.5 Consider an ICMP host unreachable message sent through two NAT boxes that intercon-
nect three address domains. How many address translations will occur? How many
translations of protocol port numbers will occur?

20.6 Imagine that we decide to create a new Internet parallel to the existing Internet that allo-
cates addresses from the same address space. Can NAT technology be used to connect
the two arbitrarily large Internets that use the same address space? If so, explain how.
If not, explain why not.

20.7 Is NAT completely transparent to a host? To answer the question, try to find a sequence
of packets that a host can transmit to determine whether it is located behind a NAT box.

208 What are the advantages of combining NAT technology with VPN technology? The
disadvantages?

20.9 Obtain a copy of slirp and instrument it to measure performance. Does slirp processing
overhead ever delay datagrams? Why or why not?

20.10 Obtain NAT and configure it on a Linux system between a private address domain and
the Internet. Which well-known services work correctly and which do not?

20.11 Read about a variant of NAT called rwice NAT that allows communication to be initiated
from either side of the NAT box at any time. How does twice NAT ensure that transla-
tions are consistent? If two instances of twice NAT are used to interconnect three ad-
dress domains, is the result completely transparent to all hosts?

21

Client-Server Model Of
Interaction

21.1 Introduction

Early chapters present the details of TCP/IP technology, including the protocols
that provide basic services and the router architecture that provides needed routing in-
formation. Now that we understand the basic technology, we can examine application
programs that profit from the cooperative use of a TCP/IP internet. While the example
applications are both practical and interesting, they do not comprise the main emphasis.
Instead, focus rests on the patterns of interaction among the communicating application
programs. The primary pattern of interaction among cooperating applications is known
as the client-server paradigmt. Client-server interaction forms the basis of most net-
work communication, and is fundamental because it helps us understand the foundation
on which distributed algorithms are built. This chapter considers the relationship
between client and server; later chapters illustrate the client-server pattern with further
examples.

21.2 The Client-Server Model

The term server applies to any program that offers a service that can be reached
over a network. A server accepts a request over the network, performs its service, and
returns the result to the requester. For the simplest services, each request arrives in a
single 1P datagram and the server returns a response in another datagram.

+Marketing literature sometimes substitutes the term application-server for client-server: the underlying
scientific principle is unchanged.

403

404 Client-Server Model Of Interaction Chap. 21

An executing program becomes a client when it sends a request to a server and
waits for a response. Because the client-server model is a convenient and natural exten-
sion of interprocess communication on a single machine, it is easy to build programs
that use the model to interact.

Servers can perform simple or complex tasks. For example, a time-of-day server
merely returns the current time whenever a client sends the server a packet. A web
server receives requests from a browser to fetch a copy of a Web page; the server ob-
tains a copy of the file for the page and returns it to the browser.

Usually, servers are implemented as application programst. The advantage of im-
plementing servers as application programs is that they can execute on any computing
system that supports TCP/IP communication. Thus, the server for a particular service
can execute on a timesharing system along with other programs, or it can execute on a
personal computer. Multiple servers can offer the same service, and can execute on the
same machine or on multiple machines. In fact, managers commonly replicate copies of
a given server onto physically independent machines to increase reliability or improve
performance. If a computer’s primary purpose is support of a particular server program,
the term ‘‘server’’ may be applied to the computer as well as to the server program.
Thus, one hears statements such as ‘‘machine A is our file server.”’

21.3 A Simple Example: UDP Echo Server

The simplest form of client-server interaction uses unreliable ¥at -am delivery to
convey messages from a client to a server and back. Consider, for example, a UDP
echo server. The mechanics are straightforward as Figure 21.1 shows. At the server
site, a UDP echo server process begins by negotiating with its operating system for per-
mission to use the UDP port ID reserved for the echo service, the UDP echo port.
Once it has obtained permission, the echo server process enters an infinite loop that has
three steps: (1) wait for a datagram to arrive at the echo port, (2) reverse the source and
destination addresses} (including source and destination IP addresses as well as UDP
port ids), and (3) return the datagram to its original sender. At some other site, a pro-
gram becomes a UDP echo client when it allocates an unused UDP protocol port, sends
a UDP message to the UDP echo server, and awaits the reply. The client expects to re-
ceive back exactly the same data as it sent.

The UDP echo service illustrates two important points that are generally true about
client-server interaction. The first concerns the difference between the lifetime of
servers and clients:

A server starts execution before interaction begins and (usually) con-
tinues to accept requests and send responses without ever terminating.
A client is any program that makes a request and awaits a response;
it (usually) terminates after using a server a finite number of times.

tMany operating systems refer to a running application program as a process, a user process, or a task.
$One of the exercises suggests considering this step in more detail.

Sec.21.3 A Simple Example: UDP Echo Server 405

(

request sent 1o
———
well-known port

@ | o

(a)

~N

response sent to
client’s port

@

(b)

Figure 21.1 UDP echo as an example of the client-server model. In (a) the
client sends a request to the server at a known IP address and at
a well-known UDP port, and in (b) the server returns a response.
Clients use any UDP port that is available.

The second point, which is more technical, concerns the use of reserved and non-
reserved port identifiers:

A server waits for requests at a well-known port that has been
reserved for the service it offers. A client allocates an arbitrary,
unused, nonreserved port for its communication.

In a client-server interaction, only one of the two ports needs to be reserved. Assigning
a unique port identifier to each service makes it easy to build both clients and servers.

Who would use an echo service? It is not a service that the average user finds in-
teresting. However, programmers who design, implement, measure, or modify network
protocol software, or network managers who test routes and debug communication
problems, often use echo servers in testing. For example, an echo service can be used
to determine if it is possible to reach a remote machine.

406 Client-Server Model Of Interaction Chap. 21
21.4 Time And Date Service

The echo server is extremely simple, and little code is required to implement either
the server or client side (provided that the operating system offers a reasonable way to
access the underlying UDP/IP protocols). Our second example, a time server, shows
that even simple client-server interaction can provide useful services. The problem a
time server solves is that of setting a computer’s time-of-day clock. The time of day
clock is a hardware device that maintains the current date and time, making it available
to programs. Once set, the time of day clock keeps time as accurately as a wristwatch.

Some systems solve the problem by asking a programmer to type in the time and
date when the system boots. The system increments the clock periodically (e.g., every
second). When an application program asks for the date or time. the system consults
the internal clock and formats the time of day in human readable form. Client-server
interaction can be used to set the system clock automatically when a machine boots. To
do so, a manager configures one machine, typically the machine with the most accurate
clock, to run a time-of-day server. When other machines boot, they contact the server
to obtain the current time.

21.4.1 Representation for the Date and Time

How should an operating system maintain the date and time-of-day? One useful
representation stores the time and date as the count of seconds since an epoch date. For
example, the UNIX operating system uses the zeroth second of January 1, 1970 as its
epoch date. The TCP/IP protocols also define an epoch date and report times as
seconds past the epoch. For TCP/IP, the epoch is defined to be the zeroth second of
January 1, 1900 and the time is kept in a 32-bit integer, a representation that accommo-
dates all dates in the near future.

Keeping the date as the time in seconds since an epoch makes the representation
compact and allows easy comparison. It ties together the date and time of day and
makes it possible to measure time by incrementing a single binary integer.

21.4.2 Local and Universal Time

Given an epoch date and representation for the time, to what time zone does the
count refer? When two systems communicate across large geographic distances, using
the local time zone from one or the other becomes difficult; they must agree on a stan-
dard time zone to keep values for date and time comparable. Thus, in addition to defin-
ing a representation for the date and choosing an epoch, the TCP/IP time server stan-
dard specifies that all values are given with respect to a single time zone. Originally
called Greenwich Mean Time, the time zone is now known as universal coordinated
time or universal time.

The interaction between a client and a server that offers time service works much
like an echo server. At the server side, the server application obtains permission to use
the reserved port assigned to time servers, waits for a UDP message directed to that
port, and responds by sending a UDP message that contains the current time in a 32-bit
integer. We can summarize:

Sec.21.4 Time And Date Service 407

Sending a datagram to a time server is equivalent to making a request
for the current time; the server responds by returning a UDP message
that contains the current time.

21.5 The Complexity of Servers

In our examples so far, servers are fairly simple because they are sequential. That
is, the server processes one request at a time. After accepting a request, the server
forms a reply and sends it before going back to see if another request has arrived. We
implicitly assume that the operating system will queue requests that arrive for a server
while it is busy, and that the queue will not become too long because the server has
only a trivial amount of work to do.

In practice, servers are usually much more difficult to build than clients because
they need to accommodate multiple concurrent requests, even if a single request takes
considerable time to process. For example, consider a file transfer server responsible
for copying a file to another machine on request. Typically, servers have two parts: a
single master program that is responsible for accepting new requests, and a set of slaves
that are responsible for handling individual requests. The master server performs the
following five steps:

Open port
The master opens the well-known port at which it can be
reached. ¢

Wait for client
The master waits for a new client to send a request.

Choose port
If necessary, the master allocates a new local protocol port for
this request and informs the client (we will see that this step is
unnecessary with TCP and most uses of UDP).

Start Slave
The master starts an independent, concurrent slave to handle this
request (e.g., in UNIX, it forks a copy of the server process).
Note that the slave handles one request and then terminates —
the slave does not wait for requests from other clients.

Continue
The master returns to the wait step and continues accepting new
requests while the newly created slave handles the previous re-
quest concurrently.

Because the master starts a slave for each new request, processing proceeds con-
currently. Thus, requests that require little time to complete can finish earlier than re-
quests that take longer, independent of the order in which they are started. For exam-
ple, suppose the first client that contacts a file server requests a large file transfer that

408 Client-Server Model Of Interaction Chap. 21

takes many minutes. If a second client contacts the server to request a transfer that
takes only a few seconds, the second transfer can start and complete while the first
transfer proceeds.

In addition to the complexity that results because servers handle concurrent re-
quests, complexity also arises because servers must enforce authorization and protection
rules. Server programs usually need to execute with highest privilege because they
must read system files, keep logs, and access protected data. The operating system will
not restrict a server program if it attempts to access users' files. Thus, servers cannot
blindly honor requests from other sites. Instead, each server takes responsibility for en-
forcing the system access and protection policies.

Finally, servers must protect themselves against malformed requests or against re-
quests that will cause the server program itself to abort. Often, it is difficult to foresee
potential problems. For example, one project at Purdue University designed a file
server that allowed student operating systems to access files on a UNIX timesharing
system. Students discovered that requesting the server to open a file named /dev/ty
caused the server to abort because UNIX associates that name with the control terminal
to which a program is attached. The server, created at system startup, had no such ter-
minal. Once an abort occurred, no client could access files until a systems programmer
restarted the server.

A more serious example of server vulnerability became known in the fall of 1988
when a student at Cornell University built a worm program that attacked computers on
the global Internet. Once the worm started running on a machine, it searched the Inter-
net for computers with servers that it knew how to exploit, and used the servers to
create more copies of itself. In one of the attacks, the worm used a bug in the UNIX
Jfingerd server. Because the server did not check incoming requests, the worm was able
to send an illegal string of input that caused the server to overwrite parts of its internal
data areas. The server, which executed with highest privilege, then misbehaved, allow-
ing the worm to create copies of itself.

We can summarize our discussion of servers:

Servers are usually more difficult to build than clients because,
although they can be implemented with application programs, servers
must enforce all the access and protection policies of the computer
svstem on which they run, and must protect themselves against all
possible errors.

21.6 RARP Server

So far, all our examples of client-server interaction require the client to know the
complete server address. The RARP protocol from Chapter 6 provides an example of
client-server interaction with a slightly different twist. Recall that a machine can use
RARP to find its IP address at startup. Instead of having the client communicate direct-
ly with a server. RARP clients broadcast their requests. One or more machines execut-
ing RARP server processes respond, each returning a packet that answers the query.

Sec. 21.6 RARP Server 409

There are two significant differences between a RARP server and a UDP echo or
time server. First, RARP packets travel across the physical network directly in
hardware frames, not in IP datagrams. Thus, unlike the UDP echo server which allows
a client to contact a server anywhere on an internet, the RARP server requires the client
to be on the same physical network. Second, RARP cannot be implemented by an ap-
plication program. Echo and time servers can be built as application programs because
they use UDP. By contrast, a RARP server needs access to raw hardware packets.

21.7 Alternatives To The Client-Server Model

What are the alternatives to client-server interaction, and when might they be at-
tractive? This section gives an answer to these questions.

In the client-server model, programs usually act as clients when they need informa-
tion, but it is sometimes important to minimize such interactions. The ARP protocol
from Chapter 5 gives one example. It uses a modified form of client-server interaction
to obtain physical address mappings. Machines that use ARP keep a cache of answers
to improve the efficiency of later queries. Caching improves the performance of client-
server interaction in cases where the recent history of queries is a good indicator of fu-
ture use.

Although caching improves performance, it does not change the essence of client-
server interaction. The essence lies in our assumption that processing must be driven
by demand. We have assumed that a program executes until it needs information and
then acts as a client to obtain the needed information. Taking a demand-driven view of
the world is natural and arises from experience. Caching helps alleviate the cost of ob-
taining information by lowering the retrieval cost for all except the first process that
makes a request.

How can we lower the cost of information retrieval for the first request? In a dis-
tributed system, it may be possible to have concurrent background activities that collect
and propagate information before any particular program requests it, making retrieval
costs low even for the initial request. More important, precollecting information can al-
low a given system to continue executing even though other machines or the networks
connecting them fail.

Precollection is the basis for the 4BSD UNIX ruptime command. When invoked,
ruptime reports the CPU load and time since system startup for each machine on the lo-
cal network. A background program running on each machine uses UDP to broadcast
information about the machine periodically. The same program also collects incoming
information and places it in a file. Because machines propagate information continu-
ously, each machine has a copy of the latest information on hand; a client seeking infor-
mation never needs to access the network. Instead, it reads the information from secon-
dary storage and prints it in a readable form.

The chief advantage of having information collected locally before the client needs
it is speed. The ruptime command responds immediately when invoked without waiting
for messages to traverse the network. A second benefit occurs because the client can

410 Client-Server Model Of Interaction Chap. 21

find out something about machines that are no longer operating. In particular, if a
machine stops broadcasting information, the client can report the time elapsed since the
last broadcast (i.e., it can report how long the machine has been off-line).

Precollection has one major disadvantage: it uses processor time and network
bandwidth even when no one cares about the data being collected. For example, the
ruptime broadcast and collection continues running throughout the night, even if no one
is logged in to read the information. If only a few machines connect to a given net-
work, precollection cost is insignificant. It can be thought of as an innocuous back-
ground activity. For networks with many hosts, however, the large volume of broadcast
traffic generated by precollection makes it too expensive. In particular, the cost of read-
ing and processing broadcast messages becomes high. Thus, precollection is not among
the most popular alternatives to client-server.

21.8 Summary

Distributed programs require network communication. Such programs often fall
into a pattern of use known as client-server interaction. A server process awaits a re-
quest and performs action based on the request. The action usually includes sending a
response. A client program formulates a request, sends it to a server, and then awaits a
reply.

We have seen examples of clients and servers and found that some clients send re-
quests directly, while others broadcast requests. Broadcast is especially useful on a lo-
cal network when a machine does not know the address of a server.

We also noted that if servers use internet protocols like UDP, they can accept and
respond to requests across an internet. If they communicate using physical frames and
physical hardware addresses. they are restricted to a single physical network.

Finally, we considered an alternative to the client-server paradigm that uses precol-
lection of information to avoid delays. An example of precollection came from a
machine status service.

FOR FURTHER STUDY

UDP echo service is defined in Postel [RFC 862). The UNIX Programmer’s
Manual describes the ruptime command (also see the related description of rwho).
Feinler er. al. [1985) specifies many standard server protocols not discussed here, in-
cluding discard, character generation, day and time, active users, and quote of the day.
The next chapters consider others.

Exercises 411

EXERCISES

21.1

21.2

21.3

214

215
21.6

21.7
218

219

21.10

Build a UDP echo client that sends a datagram to a specified echo server, awaits a reply,
and compares it to the original message. ’

Carefully consider the manipulation of [P addresses in a UDP echo server. Under what
conditions is it incorrect to create new IP addresses by reversing the source and destina-
tion IP addresses?

As we have seen, servers can be implemented by separate application programs or by
building server code into the protocol software in an operating system. What are the ad-
vantages and disadvantages of having an application program (user process) per server?
Suppose you do not know the IP address of a local machine running a UDP echo server,
but you know that it responds to requests sent to port 7. Is there an IP address you can
use to reach it?

Build a client for the UDP time service.

Characterize situations in which a server can be located on a separate physical network
from its client. Can a RARP server ever be located on a separate physical network from
it clients? Why or why not?

What is the chief disadvantage of having all machines broadcast their status periodically?
Examine the format of data broadcast by the servers that implement the 4BSD UNIX
ruptime command. What information is available to the client in addition to machine
status?

What servers are running on computers at your site? If you do not have access to sys-
tem configuration files that list the servers started for a given computer, see if your sys-
tem has a command that prints a list of open TCP and UDP ports (e.g., the UNIX netstat
command).

Some servers allow a manager to gracefully shut them down or restart them. What is the
advantage of graceful shutdown?

22

The Socket Interface

22.1 Introduction

So far, we have concentrated on discussing the principles and concepts that under-
lie the TCP/IP protocols without specifying the interface between the application pro-
grams and the protocol software. This chapter reviews one example of an Application
Program Interface (API), the interface between application programs and TCP/IP proto-
cols. There are two reasons for postponing the discussion of APIs. First, in principle
we must distinguish between the interface and TCP/IP protocols because the standards
do not specify exactly how application programs interact with protocol software. Thus,
the interface architecture is not standardized,; its design lies outside the scope of the pro-
tocol suite. Second, in practice, it is inappropriate to tie the protocols to a particular
API because no single interface architecture works well on all systems. In particular,
because protocol software resides in a computer’s operating system, interface details
depend on the operating system.

Despite the lack of a standard, reviewing an example will help us understand how
programmers use TCP/IP. Although the example we have chosen is from the BSD
UNIX operating system, it has become, de facto, a standard that is widely accepted and
used in many systems. In particular, it forms the basis for Microsoft’s Windows Sock-
etst interface. The reader should keep in mind that our goal is merely to give one con-
crete example, not to prescribe how APIs should be designed. The reader should also
remember that the operations listed here are not part of the TCP/IP standards.

+Progrannners often use the term WINSOCK as a replacement for Windows Sockets.

413

414 The Socket Interface Chap. 22
22.2 The UNIX I/O Paradigm And Network I/O

Developed in the late 1960s and early 1970s, UNIX was originally designed as a
timesharing system for single processor computers. It is a process-oriented operating
system in which each application program executes as a user level process. An applica-
tion program interacts with the operating system by making system calls. From the
programmer’s point of view, system calls look and behave exactly like other procedure
calls. They take arguments and return one or more results. Arguments can be values
(e.g., an integer count) or pointers to objects in the application program (e.g., a buffer to
be filled with characters).

Derived from those in Multics and earlier systems, the UNIX input and output
(I/O) primitives follow a paradigm sometimes referred to as open-read-write-close. Be-
fore a user process can perform 1/O operations, it calls open to specify the file or device
to be used and obtains permission. The call to open returns a small integer file descrip-
tort that the process uses when performing 1/O operations on the opened file or device.
Once an object has been opened, the user process makes one or more calls to read or
write to transfer data. Read transfers data into the user process; write transfers data
from the user process to the file or device. Both read and write take three arguments
that specify the file descriptor to use, the address of a buffer, and the number of bytes to
transfer. After all transfer operations are complete, the user process calls close to in-
form the operating system that it has finished using the object (the operating system au-
tomatically closes all open descriptors if a process terminates without calling close).

22.3 Adding Network /0 to UNIX

Originally, UNIX designers cast all I/O operations in the open-read-write-close
paradigm described above. The scheme included I/O for character-oriented devices like
keyboards and block-oriented devices like disks and data files. An early implementa-
tion of TCP/IP under UNIX also used the open-read-write-close paradigm with a special
file name, /dev/tcp.

The group adding network protocols to BSD UNIX decided that because network
protocols are more complex than conventional I/O devices, interaction between user
processes and network protocols must be more complex than interactions between user
processes and conventional 1/O facilities. In particular, the protocol interface must al-
low programmers to create both server code that awaits connections passively as well as
client code that forms connections actively. Furthermore, application programs sending
datagrams may wish to specify the destination address along with each datagram instead
of binding destinations at the time they call open. To handle all these cases, the
designers chose to abandon the traditional UNIX open-read-write-close paradigm, and
added several new operating system calls as well as new library routines. Adding net-
work protocols to UNIX increased the complexity of the I/O interface substantially.

Further complexity arises in the UNIX protocol interface because designers at-
tempted to build a general mechanism to accommodate many protocols. For example,

+The term *‘file descriptor’” arises because in UNIX all devices are mapped into the file system name
space. In most cases, I/O operations on files and devices aie indistinguishable.

Sec. 22.3 Adding Network /O to UNIX 415

the generality makes it possible for the operating system to include software for other
protocol suites as well as TCP/IP, and to allow an application program to use one or
more of them at a time. As a consequence, the application program cannot merely sup-
ply a 32-bit address and expect the operating system to interpret it correctly. The appli-
cation must explicitly specify that the 32-bit number represents an IP address.

22.4 The Socket Abstraction

The basis for network I/O in the socket API centers on an abstraction known as the
sockert. We think of a socket as a generalization of the UNIX file access mechanism
that provides an endpoint for communication. As with file access, application programs
request the operating system to create a socket when one is needed. The system returns
a small integer that the application program uses to reference the newly created socket.
The chief difference between file descriptors and socket descriptors is that the operating
system binds a file descriptor to a specific file or device when the application calls
open, but it can create sockets without binding them to specific destination addresses.
The application can choose to supply a destination address each time it uses the socket
(e.g., when sending datagrams), or it can choose to bind the destination address to the
socket and avoid specifying the destination repeatedly (e.g., when making a TCP con-
nection).

Whenever it makes sense, sockets perform exactly like UNIX files or devices, so
they can be used with traditional operations like read and write. For example, once an
application program creates a socket and creates a TCP connection from the socket to a
foreign destination, the program can use write to send a stream of data across the con-
nection (the application program at the other end can use read to receive it). To make it
possible to use primitives like read and write with both files and sockets, the operating
ystem allocates socket descriptors and file descriptors from the same set of integers and
makes sure that if a given integer has been allocated as a file descriptor, it will not also
be allocated as a socket descriptor.

22.5 Creating A Socket

The socket function creates sockets on demand. It takes three integer arguments
and returns an integer result:

result = socket(pf, type, protocol)

Argument pf specifies the protocol family to be used with the socket. That is, it speci-
fies how to interpret addresses when they are supplied. Current families include the
TCP/IP internet (PF_INET), Xerox Corporation PUP internet (PF_PUP), Apple Com-
puter Incorporated AppleTalk network (PF_APPLETALK), and UNIX file system
(PF_UNIX) as well as many othersi.

+For now, we will describe sockets as part of the operating system as they are implemented in UNIX;
later sections describe how other operating systems use library routines to provide a socket APL

$In UNIX, application programs contain symbolic names like PF_INET; system files contain the defini-
tions that specify numeric values for each name.

416 The Socket Interface Chap. 22

Argument rype specifies the type of communication desired. Possible types in-
clude reliable stream delivery service (SOCK_STREAM) and connectionless datagram
delivery service (SOCK_DGRAM), as well as a raw type (SOCK_RAW) that allows
privileged programs to access low-level protocols or network interfaces. Two additional
types were planned, but not implemented.

Although the general approach of separating protocol families and types may seem
sufficient to handle all cases easily. it does not. First, it may bz that a given family of
protocols does not support one or more of the possible service types. For example, the
UNIX family has an interprocess communication mechanism called a pipe that uses a
reliable stream delivery service, but has no mechanism for sequenced packet delivery.
Thus, not all combinations of protocol family and service type make sense. Second,
some protocol families have multiple protocols that support one type of service. For
example, it may be that a single protocol family has two connectionless datagram
delivery services. To accommodate multiple protocols within a family, the socker call
has a third argument that can be used to select a specific protocol. To use the third ar-
gument, the programmer must understand the protocol family well enough to know the
type of service each protocol supplies.

Because the designers tried to capture many of the conventional UNIX operations
in their socket design, they needed a way to simulate the UNIX pipe mechanism. It is
not necessary to understand the details of pipes; only one salient feature is important:
pipes differ from standard network operations because the calling process creates both
endpoints for the communication simultaneously. To accommodate pipes, the designers
added a socketpair function that takes the form:

socketpair(pf, type, protocol, sarray)

Socketpair has one more argument than the socker procedure, sarray. The additional ar-
gument gives the address of a two-element integer array. Socketpair creates two sock-
ets simultaneously and places the two socket descriptors in the two elements of sarray.
Readers should understand that socketpair is not meaningful when applied to the
TCP/IP protocol family (it has been included here merely to make our description of the
interface complete).

22.6 Socket Inheritance And Termination

UNIX uses the fork and exec system calls to start new application programs. It is a
two-step procedure. In the first step, fork creates a separate copy of the currently exe-
cuting’ application program. In the second step, the new copy replaces’ itself with the
desired application program. When a program calls fork, the newly created copy inher-
its access to all open sockets just as it inherits access to all open files. When a program
calls exec, the new application retains access to all open sockets. We will see that mas-
ter servers use socket inheritance when they create slave servers to handle a specific
connection. Internally, the operating system keeps a reference count associated with
each socket, so it knows how many application programs (processes) have access to it.

Sec. 22.6 Socket Inheritance And Termination 417

Both the old and new processes have the same access rights to existing sockets,
and both can access the sockets. Thus, it is the responsibility of the programmer to en-
sure that the two processes use the shared socket meaningfully.

When a process finishes using a socket it calls close. Close has the form:

close(socket)

where argument socket specifies the descriptor of a socket to close. When a process ter-
minates for any reason, the system closes all sockets that remain open. Internally, a call
to close decrements the reference count for a socket and destroys the socket if the count
reaches zero.

22.7 Specifying A Local Address

Initially, a socket is created without any association to local or destination ad-
dresses. For the TCP/IP protocols, this means no local protocol port number has been
assigned and no destination port or IP address has been specified. In many cases, appli-
cation programs do not care about the local address they use and are willing to allow
the protocol software to choose one for them. However, server processes that operate at
a well-known port must be able to specify that port to the system. Once a socket has
been created, a server uses the bind function to establish a local address for it. Bind has
the following form:

bind(socket, localaddr, addrlen)

Argument socket is the integer descriptor of the socket to be bound. Argument /o-
caladdr is a structure that specifies the local address to which the socket should be
bound, and argument addrlen is an integer that specifies the length of the address meas-
ured in bytes. Instead of giving the address merely as a sequence of bytes, the
designers chose to use a structure for addresses as Figure 22.1 illustrates.

0 16 31
ADDRESS FAMILY ADDRESS OCTETS 0-1
ADDRESS OCTETS 2-5
ADDRESS OCTETS 6-9
ADDRESS OCTETS 10-13

Figure 22.1 The sockaddr structure used when passing a TCP/IP address to
the socket interface.

418 The Socket Interface Chap. 22

The structure, generically named sockaddr, begins with a 16-bit ADDRESS FAMI-
LY field that identifies the protocol suite to which the address belongs. It is followed
by an address of up to /4 octets. When declared in C, the socket address structure is a
union of structures for all possible address families.

The value in the ADDRESS FAMILY field determines the format of the remaining
address octets. For example, the value 2% in the ADDRESS FAMILY field means the
remaining address octets contain a TCP/IP address. Each protocol family defines how it
will use octets in the address field. For TCP/IP addresses, the socket address is known
as sockaddr_in. 1t includes both an [P address and a protocol port number (i.e., an in-
ternet socket address structure can contain both an IP address and a protocol port at that
address). Figure 22.2 shows the exact format of a TCP/IP socket address.

0 16 31
ADDRESS FAMILY (2) PRCTOCOL PORT

IP ADDRESS
UNUSED (ZERO)
UNUSED (ZERO)

Figure 22.2 The format of a socket address structure (sockaddr_in) when
used with a TCP/IP address. The structure includes both an IP
address and a protocol port at that address.

Although it is possible to specity arbitrary values in the address structure when cal-
ling bind, not all possible bindings are vahd. For example, the caller might request a
local protocol port that is already in use by another program, or it might request an in-
valid IP address. In such cases. the bind call fails and returns an error code.

22.8 Connecting Sockets To Destination Addresses

Initially. a socket is created in the unconnected state, which means that the socket
1s net associated with any foreign destination. The function connect binds a permanent
destination to a socket. placing it in the connected state. An application program must
call connect 10 establish a connection before it can transfer data through a reliable
stream socket. Sockets used with connectionless datagram services need not be con-
nected before they are used, but doing so makes it possible to transfer data without
specifying the destination each time.

The connect function has the form:

connect(socket, destaddr, addrlen)

+UNIX uses the symbolic name PF_INET 1o denote TCP/IP aduresses.

Sec. 22.8 Connecting Sockets To Destination Addresses 419

Argument socket is the integer descriptor of the socket to connect. Argument destaddr
is a socket address structure that specifies the destination address to which the socket
should be bound. Argument addrlen specifies the length of the destination address
measured in bytes.

The semantics of connect depend on the underlying protocols. Selecting the reli-
able stream delivery service in the PF_INET family means choosing TCP. In such
cases, connect builds a TCP connection with the destination and returns an error if it
cannot. In the case of connectionless service, connect does nothing more than store the
destination address locally.

22.9 Sending Data Through A Socket

Once an application program has established a socket, it can use the socket to
transmit data. There are five possible functions from which to choose: send, sendto,
sendmsg, write, and writev. Send, write, and writev only work with connected sockets
because they do not allow the caller to specify a destination address. The differences
between the three are minor. Write takes three arguments:

write(socket, buffer, length)

Argument socket contains an integer socket descriptor (write can also be used with other
types of descriptors). Argument buffer contains the address of the data to be sent, and
argument length specifies the number of bytes to send. The call to write blocks until
the data can be transferred (e.g., it blocks if internal system buffers for the socket are
full). Like most system calls, write returns an error code to the application calling it,
allowing the programmer to know if the operation succeeded.

The system call writev works like write except that it uses a ‘‘gather write’” form,
making it possible for the application program to write a message without copying the
message into contiguous bytes of memory. Writev has the form:

writev(socket, iovector, vectorlen)

Argument iovector gives the addrzss of an array of type iovec that contains a sequence
of pointers to the blocks of bytes that form the message. As Figure 22.3 shows, a
length accompanies each pointer. Argument vectorlen specifies the number of entries in
iovector.

420 The Socket Interface Chap. 22

0 31
POINTER TO BLOCK, (32-bit address)
LENGTH OF BLOCK, (32-bit integer)
POINTER TO BLOCK, (32-bit address)
LENGTH OF BLOCK, (32-bit integer)

Figure 22.3 The format of an iovector of type iovec used with writev and
ready.

The send function has the form:
send(socket, message, length, flags)

where argument socker specifies the socket to use, argument message gives the address
of the data to be sent, argument length specifies the number of bytes to be sent, and ar-
gument flags controls the transmission. One value for flags allows the sender to specify
that the message should be sent out-of-band on sockets that support such a notion. For
example, recall from Chapter 13 that out-of-band messages correspond to TCP’s notion
of urgent data. Another value for flags allows the caller to request that the message be
sent without using local routing tables. The intention is to allow the caller to take con-
trol of routing, making it possible to write network debugging software. Of course, not
all sockets support all requests from arbitrary programs. Some requests require the pro-
gram to have special privileges; others are simply not supported on all sockets.

Functions sendto and sendmsg allow the caller to send a message through an un-
connected socket because they both require the caller to specify a destination. Sendto,
which takes the destination address as an argument, has the form:

sendto(socket, message, length, flags, destaddr, addrlen)

The first four arguments are exactly the same as those used with the send function. The
final two arguments specify a destination address and give the length of that address.
Argument destaddr specifies the destination address using the sockaddr_in structure as
defined in Figure 22.2.

A programmer may choose to use function sendmsg in cases where the long list of
arguments required for sendto makes the program inefficient or difficult to read.
Sendmsg has the form:

sendmsg(socket, messagestruct, flags)

where argument messagestruct is a structure of the form illustrated in Figure 22.4. The
structure contains iniormation about the message to be sent, its length, the destination

Sec.22.9 Sending Data Through A Socket 421

address, and the address length. This call is especially useful because there is a
corresponding input operation (described below) that produces a message structure in
exactly the same format.

POINTER TO SOCKETADDR
SIZE OF SOCKETADDR
POINTER TO IOVEC LIST
LENGTH OF IOVEC LIST
POINTER TO ACCESS RIGHTS LIST
LENGTH OF ACCESS RIGHTS LIST

Figure 22.4 The format of message structure messagestruct used by sendmsg.

22.10 Receiving Data Through A Socket

Analogous to the five different output operations, the socket API offers five func-
tions that a process can use to receive data through a socket: read, readv, recv,
recvfrom, and recvmsg. The conventional input operation, read, can only be used when
the socket is connceted. It has the form:

read(descriptor, buffer, length)

where descriptor gives the integer descriptor of a socket or file descriptor from which to
read data, buffer specifies the address in memory at which to store the data, and length
specifies the maximum number of bytes to read.

An alternative form, readv, allows the caller to use a *‘scatter rea ** style of inter-
face that places the incoming data in noncontiguous locations. Readv has the form:

readv(descriptor, iovector, vectorlen)

Argument iovector gives the address of a structure of type iovec (see Figure 22.3) that
contains a sequence of pointers to blocks of memory into which the incoming data
should be stored. Argument vectorlen specifies the number of entries in iovector.

In addition to the conventional input operations, there are three additional functions
for network message input. Processes call recv to receive data from a connected socket.
It has the form:

recv(socket, buffer, length, flags)

422 The Socket Interface Chap. 22

Argument socket specifies a socket descriptor from which data should be received. Ar-
gument buffer specifies the address in memory into which the message should be
placed, and argument length specifies the length of the buffer area. Finally, argument
flags allows the caller to control the reception. Among the possible values for the flags
argument is one that allows the caller to look ahead by extracting a copy of the next in-
coming message without removing the message from the socket.

The function recyfrom allows the caller to specify input from an unconnected sock-
et. It includes additional arguments that allow the caller to specify where to record the
sender’s address. The form is:

recvfrom(socket, buffer, length, flags, fromaddr, addrlen)

The two additional arguments, fromaddr and addrien, are pointers to a socket address
structure and an integer. The operating system uses fromaddr to record the address of
the message sender and uses fromlen to record the length of the sender’s address. No-
tice that the output operation sendto, discussed above, takes an address in exactly the
same form as recvfrom generates. Thus, sending replies is easy.

The final function used for input, recvmsg, is analogous to the sendmsg output
operation. Recvmsg operates like recvfrom, but requires fewer arguments. Its form is:

recvmsg(socket, messagestruct, flags)

where argument messagestruct gives the address of a structure that holds the address for
an incoming message as well as locations for the sender’s address. The structure pro-
duced by recvmsg is exactly the same as the structure used by sendmsg, making thém
operate well as a pair.

22.11 Obtaining Local And Remote Socket Addresses

We said that newly created processes inherit the set of open sockets from the pro-
cess that created them. Sometimes, a newly created process needs to determine the des-
tination address to which a socket connects. A process may also wish to determine the
local address of a socket. Two functions provide such information: getpeername and
getsockname (despite their names, both deal with what we think of as “‘addresses’’).

A process calls getpeername to determine the address of the peer (i.e., the remote
end) to which a socket connects. It has the form:

getpeername(socket, destaddr, addrlen)

Argument socket specifies the socket for which the address is desired. Argument des-
taddr is a pointer to a structure of type sockaddr (see Figure 22.1) that will receive the
socket address. Finally, argument addrlen is a pointer to an integer that will receive the
length of the address. Getpeername only works with connected sockets.

Sec. 22.11 Obtaining Local And Remote Socket Addresses 423

Function getsockname returns the local address associated with a socker. It has the
form:

getsockname(socket, localaddr, addrlen)

As expected, argument socket specifies the socket for which the local address is desired.
Argument localaddr is a pointer to a structure of type sockaddr that will contain the ad-
dress, and argument addrlen is a pointer to an integer that will contain the length of the
address.

22.12 Obtaining And Setting Socket Options

In addition to binding a socket to a local address or connecting it to a destination
address, the need arises for a mechanism that permits application programs to control
the socket. For example, when using protocols that use timeout and retransmission, the
application program may want to obtain or set the timeout parameters. It may also want
to control the allocation of buffer space, determine if the socket allows transmission of
broadcast, or control processing of out-of-band data. Rather than add new functions for
each new control operation, the designers decided to build a single mechanism. The
mechanism has two operations: getsockopt and setsockopt.

Function getsockopt allows the application to request information about the socket.
A caller specifies the socket, the option of interest, and a location at which to store the
requested information. The operating system examines its internal data structures for
the socket ~nd passes the requested information to the caller. The call has the form:

getsockopt(socket, level, optionid, optionval, length)

Argument socket specifies the socket for which information is needed. Argument level
identifies whether the operation applies to the socket itself or to the underlying proto-
cols being used. Argument optionid specifies a single option to which the request ap-
plies. The pair of arguments optionval and length specify two pointers. The first gives
the address of a buffer into which the system places the requested value, and the second
gives the address of an integer into which the system places the length of the option
value.

Function setsockopt allows an application program to set a socket option using the
set of values obtained with getsockopt. The caller specifies a socket for which the op-
tion should be set, the option to be changed, and a value for the option. The call to ser-
sockopt has the form:

setsockopt(socket, level, optionid, optionval, length)
where the arguments are like those for getsockopt, except that the length argument con-

tains the length of the option being passed to the system. The caller must supply a legal
value for the option as well as a correct length for that value. Of course, not all options

424 The Socket Interface Chap. 22

apply to all sockets. The correctness and semantics of individual requests depend on
the current state of the socket and the underlying protocols being used.

22.13 Specifying A Queue Length For A Server

One of the options that applies to sockets is used so frequently, a separate function
has been dedicated to it. To understand how it arises, consider a server. The server
creates a socket, binds it to a well-known protocol port, and waits for requests. If the
server uses a reliable stream delivery, or if computing a response takes nontrivial
amounts of time, it may happen that a new request arrives before the server finishes
responding to an old request. To avoid having protocols reject or discard incoming re-
quests, a server must tell the underlying protocol software that it wishes to have such
requests enqueued until it has time to process them.

The function listen allows servers to prepare a socket for incoming connections. In
terms of the underlying protocols, listen puts the socket in a passive mode ready to ac-
cept connections. When the server invokes listen, it also informs the operating system
that the protocol software should enqueue multiple simultaneous requests that arrive at
the socket. The form is:

listen(socket, glength)

Argument socket gives the descriptor of a socket that should be prepared for use by a
server, and argument glength specifies the length of the request queue for that socket.
After the call, the system will enqueue up to glength requests for connections. If the
queue is full when a request arrives, the operating system will refuse the connection by
discarding the request. Listen applies only to sockets that have selected reliable stream
delivery service.

22.14 How A Server Accepts Connections

As we have seen, a server process uses the functions socket, bind, and listen to
create a socket, bind it to a well-known protocol port, and specify a queue length for
connection requests. Note that the call to bind associates the socket with a well-known
protocol port, but that the socket is not connected to a specific foreign destination. In
fact, the foreign destination must specify a wildcard, allowing the socket to receive con-
nection requests from an arbitrary client.

Once a socket has been established, the server needs to wait for a connection. To
do so, it uses function accept. A call to accept blocks until a connection request ar-
rives. It has the form:

newsock = accept(socket, addr, addrlen)

